• 回答数

    4

  • 浏览数

    153

Jingelababy今
首页 > 学术期刊 > 关于马尔可夫链论文范文写作

4个回答 默认排序
  • 默认排序
  • 按时间排序

胡来,任性

已采纳

谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物体的生存、繁殖都起着重要作用。生物信息包含的范围很广,除遗传物质、神经电冲动和激素之外,生物体发出的声音、气味、颜色以及生物的行为本身都含有信息,都对生物的个体和群体产生影响,和生物的生存与进化密不可分。生物信息的特点是消耗极少的能量和物质即可产生极大的生物效应。生物信息一般可分为遗传信息、神经和感觉信息及化学信息。虽然遗传信息和神经感觉信息的载体都属于化学物质,但通常所指的化学信息是除以上两类物质以外的化学物质所携带和传递的信息。高等生物的激素及昆虫外激素都属于这一类。遗传信息是指生物为复制与自己相同的东西、由亲代传递给子代、或各细胞每次分裂时由细胞传递给细胞的信息, 即碱基对的排列顺序(或指DNA分子的脱氧核苷酸的排列顺序) 。遗传信息以密码形式存储在DNA分子上,通过DNA的复制传递给子代。在后代生长发育过程中,遗传信息自DNA转录给RNA,后翻译成特异的蛋白质,以执行各种生命功能。从历史上看,首先是由G.J.Mendel(1866)的研究形成了概念,即相应于生物各种性状的因素(现在称为基因)中包含着相应的信息(以后G.Beadle等人(1941)所开创了遗传生物化学的研究,描绘出这样一个轮廓:基因和决定生物结构与功能的蛋白质之间具有一对一的对应关系。 关于基因的化学本质方面,根据O.T.Avery等(1944)进行的转化实验,以及A.Hershey和M.Chase(1952)用大肠杆菌噬菌体的DNA进行的性状表达实验,已阐明DNA是遗传信息的载体。附着DNA结构研究的进展,现在已经确立了这样的概念,即基因所具有的信息可将DNA的碱基排列进行符号化。信息在表达时,DNA的碱基排列首先被转录成RNA的碱基排列,然后再根据这种排列合成蛋白质。有的病毒的遗传信息的载体不是DNA,而是RNA。遗传信息不仅有相应于蛋白质的基因信息,也包括对信息解读所必需的信息、控制信息表达所必需的信息,以及生物为了复制与自己相同结构所必需的一切信息。神经和感觉信息靠电脉冲和神经递质携带和传递。神经系统接受内外环境中的信息,进行加工处理,调节和控制机体各部分功能。生物靠神经系统电脉冲和神经递质携带和传递。神经系统的功能是接收、传递内外环境中的信息,加以处理、分析,从而控制和调节机体各部功能,对环境作出适当的反应。因此,神经信息对于有机体的生存以及正常生活起着至关重要的作用。化学信息是除上述两类物质外由化学介质传递的信息。生物体的各种功能能够有条不紊地进行,对环境能及时做出反应,是由于生物体内存在着通过各种各样的化学信息分子进行传递的信息系统。生物信息在生物研究中有重要作用,然而,原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。因此,生物信息学便是生物信息在生物研究中重要应用。 生物信息学是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。生物信息学研究对象是生物信息。其研究重点主要体现在基因组学和蛋白学两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。 生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学,随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 综上所述,对生物信息的研究对生物学的蓬勃发展具有重要作用。

150 评论

幻影墨斗鱼

1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.

95 评论

小小的I

论文:论文地址: 论文题目:《Session-based Recommendation with Graph Neural Networks》SR-GNN github: 基于会话的推荐一般是将序列会话建模,将整个session进行编码,变成一个隐向量,然后利用这个隐向量进行下一个点击预测。但是这种方法没有考虑到item直接复杂的转换(transitions)关系,也就是item之间在点击的session中除了时间顺序外还有复杂的有向图内的节点指向关系,所以之前的方法不足以很好的对点击序列进行建模。 现有基于会话的推荐,方法主要集中于循环神经网络和马尔可夫链,论文提出了现有方法的两个缺点: 1)当一个session中用户的行为数量十分有限时,这些方法难以获取准确的用户行为表示。如当使用RNN模型时,用户行为的表示即最后一个单元的输出,论文认为只有这样并非十分准确。 2)根据先前的工作发现,物品之间的转移模式在会话推荐中是十分重要的特征,但RNN和马尔可夫过程只对相邻的两个物品的 单向转移关系 进行建模,而忽略了会话中其他的物品。 为了克服上述缺陷,本文提出了用图神经网络对方法对用户对session进行建模:下面具体介绍怎么进行图序列推荐 V = {v1,v2...vm}为全部的item,S = { }为一个session里面按时间顺序的点击物品,论文的目标是预测用户下一个要点击的物品vs,n+1,模型的任务是输出所有item的预测概率,并选择top-k进行推荐。 我们为每一个Session构建一个子图,并获得它对应的出度和入度矩阵。 假设一个点击序列是v1->v2->v4->v3,那么它得到的子图如下图中红色部分所示:另一个例子,一个点击序列是v1->v2->v3->v2->v4,那么它得到的子图如下:同时,我们会为每一个子图构建一个出度和入度矩阵,并对出度和入度矩阵的每一行进行归一化,如我们序列v1->v2->v3->v2->v4对应的矩阵如下:这个矩阵里面的值是怎么计算的呢?下面讲一下: 看左边的出度矩阵,第一行为 0 1 0 0 ,代表着v1->v2,因为v1,只有一个指向的item,所以为1;看第二行,0 0 1/2 1/2,因为v2有指向v3和v4的边,所以进行归一化后每一个值都变成了1/2。入度矩阵的计算方法也是一样的,就不再说了。 本文采用的是GRU单元进行序列建模,将图信息嵌入到神经网络中,让GRU充分学习到item之间的关系,传统的GRU只能学到相邻的两个物品之间的关系,加入图信息后就能学到整个session子图的信息。 计算公式如下:为了刚好的理解这个计算过程,我们还是使用之前那个例子:v1->v2->v3->v2->v4来一步步分析输入到输出的过程。 (1) 是t时刻,会话s中第i个点击对应的输入, 是n✖️2n的矩阵,也就是会话子图的完整矩阵,而 是其中一行,即物品vi所对应的那行,大小为1✖️2n,n代表序列中不同物品的数量。 如果按照例子来看,如果i取2,那么 为 [0 0 1/2 1/2 1/2 0 1/2 0] 进一步的,可以把 :拆解为[ , ] (2) 可以理解为序列中第i个物品,在训练过程中对应的嵌入向量,这个向量随着模型的训练不断变化,可以理解为隐藏层的状态,是一个d维向量。    (3)  H是d*2d的权重向量,也可以看作是一个分块的矩阵,可以理解为H=[Hin|Hout],每一块都是d*d的向量。 那么我们来看看计算过程: 1)[ ..., ] ,结果是d * n的矩阵,转置之后是n*d的矩阵,计作 2) : H相当于[   ],即拆开之后相乘再拼接,因此结果是一个1 * 2d的向量。 上面就是完整的第i个点击的输入的计算过程,可以看到,在进入GRU计算之前,通过跟As,i矩阵相乘,把图信息嵌入到了神经网络中取,加深了神经网络学习到的item之间的交互信息。 此外,就是GRU的计算过程了,跟原始的GRU不一样的地方在于输入从xt变成了嵌入了图信息的as,i。 通样也有更新门和重置门,计算方法跟原始GRU一模一样。 这里的 其实就是相当于原始gru中的 ,只不过在SR-GNN里面,进行一轮运算的时候i是没有变化,相当于每个物品单独进去GRU进行计算,得到自己的向量,也就是说在GRU的计算过程中, 是不断变化的,看一下源码更易于理解: hidden就是公式里面的 ,在gru的每一个step计算中都会进行更新,这里我有个疑问,如果所有item的hidden都更新的话,那么应该是整个序列中所有的item并行进入GRU中进行计算,每一个step都得到自己的vector,当每个item的vector更新后,下一个step就重新根据新的 计算 ,接着计算下一个step。 计算过程大概就是下面这样:这里有四个GRU并行计算,没次更新自己的hidden状态,输入则考虑所有的hidden和图信息。 从上面的图看来,每一个item都要进行T个step得到自己的item-vec,所以经过T个step后,我们就得到了序列中所有item的向量,即:图中用蓝色框框画出来的向量,有了这些向量后,我们怎么得到预测结果呢?这就引入了下一个问题。 观察上面的模型结构,我们看到attention,没错,我们认为一个session中的这些item-vec并不都对预测结果产生影响,有些item对结果影响很大,有些影响很小,所以我们进行了加权求和。同时,论文认为session对最后一个item-vec,s1=vn是重要的,所以单独拿出来:公式(6)就是简单的attention操作,其实从公式上来看就是计算每个vi跟最后一个向量vn的权值,然后进行加权求和。 在最后的输出层,使用sh和每个物品的embedding进行内积计算,这里vi应该是item的embedding层出来的向量,而不是后面一直更新的hidden:最后通过一个softmax得到最终每个物品的点击概率: 损失函数为交叉熵损失函数:从数据上来看,SR-GNN超过了经典的GRU4REC,这也说明了图信息的嵌入能带来更好的推荐效果。 本论文很巧妙的将图信息嵌入的神经网络中,更高地让GRU学习到每个item之间的关系,不再局限于相邻的物品之间进行学习。近年来,图神经网络的思想和方法屡屡被用在推荐系统中,学好图神经网络应该是推荐系统的下一个热潮。

194 评论

乌龟宝宝28

开题报告对整个课题研究工作的顺利开展起着关键的作用,以下是我搜集整理的计算机毕业论文开题报告范文,欢迎阅读查看。

论文题目: 批量到达的云中心性能分析模型

一、选题背景

云计算是一种基于网络的计算模型。用户通过网络向提供商申请计算资源,例如申请操作系统、运行环境或者软件包等资源。其实用户被分配资源的时候,并不清楚真正的运行环境和分配的具体细节。也就是说云就是用户和计算环境之间的一层抽象。在1969年,L.Kleinrock曾说过,计算机网络还处在初步阶段,但是随着它的壮大和成长,我们就会看到与电力系统和电话系统一样的“计算服务”,将会在个人家庭和办公室全面的使用。这种基于“计算服务”的观点预测了整个计算工业在21世纪的大转型。云这种计算服务模型已经和其他基础设施服务一样按需服务。云计算己经成为继电、水、煤气和电话之后的第五个公共基础设施⑴。目前,客户已经不需要在构建和维护大型而复杂的IT基础设施方面投入太多精力和财力。取而代之的是他们只需要支付他们使用的计算服务的费用。云计算的服务模式可以分为三层:设备即服务(laaS),设备就是指硬盘、内存、服务器和网络设备等,这些都可以通过网络访问;平台即服务(PaaS),其中包括一些计算平台,比如说带有操作系统的硬件,虚拟服务器等;软件即服务(SaaS),包括软件应用以及其他相应的服务应用。云计算的定义并不唯一,其中能够较为准确描述其特征的是H.Khazad于2010年提出的,“云计算是一种新型的运算领域,物理设备,硬件平台和应用软件等共享资源通过网络服务方式为用户提供按其需求的服务。”[2]这个定义阐述了云计算的几个重要特点。

(1)大规模基础设施。以超大规模的硬件设备为底层的云计算平台具有超强的计算能力。各大全球知名的企业,如roM、亚马逊、微软等,均拥有数十万台服务器的云服务平台,而谷歌的云计算平台中服务器的数量更是超过百万台。即便是普通的私有云,一般也会购置数百甚至上千台的服务器。

(2)基于虚拟化技术。用户从云计算平台中获取的资源均经过虚拟化的。从运行端而言,用户将应用程序在云中托管运行即可,而无需了解程序运行的具体位置。从终端来讲,用户可以在任何位置通过终端设备获取所需服务。简而言之,用户始终面对的是一个云平台的使用接口,而不是有形的、固定的实体。

(3)高可靠性。云计算采用数据多副本容错技术、计算节点同构互换策略等来确保云中心的可靠性。云计算这一级别的可靠性是本地计算所无法比拟的。

(4)通用性。云计算并不会专门针对任何一个具体的应用而提供服务。事实上,一个用户可以在云计算平台中根据自己的需要去创建多个不同的应用,而一个云计算平台也可以运行多个不同用户的不同应用。

(5)易扩展性。云计算平台的规模可以根据实际需要进行收缩和扩展,从而满足平台请求大小和使用用户数目的变化。

(6)按需服务。用户所应支付的使用费用是根据其使用计算资源的多少进行计算。多使用多付费,少使用少付费,不使用不付费。这样完全可以减少闲暇时用户资源的闲置。

(7)成本低。通过采用容错技术,可以使用大规模廉价的服务器集群作为硬件基础设施建设云计算平台,这对于云计算服务提供商而言,大大降低了成本投入。对于用户而言,以少量租金换取了原本需要高昂价格投入才能获得的计算资源,并且无需考虑软硬件维护的开销,亦是十分划算。

二、研究目的和意义

现有的云中心物理机模型通常都是面向单任务的,而面向批量任务的服务模型,其性能评估和指标的变化目前正属于初步的研宄阶段,并没有成熟的模型。因此,本文采用ikT/G/m/w+t排队系统对面向批量任务的.云中心进行描述,使用嵌入式马尔可夫链法对+排队系统进行建模,从而实现了对云中心进行准确的建模和分析。

三、本文研究涉及的主要理论

排队现象是日常生活中常见的社会现象。等待公交车时需要排队、去医院看病需要排队、在食堂打饭同样需要排队等等。排队现象的出现需要两个方面同时具备,排队的个体需要得到服务并且存在服务的提供者。而所谓的排队论就是仿照这样的排队现象,先抽象成物理模型,然后进一步建立数学模型的理论体系。显然,排队论研究的是一个系统对用户提供某种服务时,系统所呈现的各种状态。在排队论中,通常将要求得到服务的人或物称为顾客,而给予服务的人员或者机构称为服务台。顾客与服务台就构成了一个排队系统。尽管排队系统种类繁多,但从决定排队系统进程的主要因素来看,它主要是由三个部分组成:顾客到达,排队过程和服务过程。

(1)顾客到达:顾客到达过程描述了顾客到达时候的规律。顾客到达的方式通常是一个一个到达的,此外还有批量到达的,也叫做集体到达。顾客既可能逐个到达也可能分批到达,同时顾客到达之间的时间间隔长度也并不唯一。但是到达总会有一定的规律的。这个到达规律指的是到达过程或到达时间的分布。顾客到达过程研究的主要内容便包括相邻顾客到达的时间间隔服从怎样的概率分布、该概率分布的参数取值如何、各到达时间间隔之间是否相互独立等。

(2)排队过程:在排队过程中,需要讨论的主要问题有两个,一个是排队的队列长度,另一个是排队的规则。排队的队列长度分为有限和无限的两种。队列长度的大小不同,讨论问题的难易和结论就不同。很多情况下,队列长度容量设为无限大来处理问题。排队规则中又包括有队列形态和等待制度两个部分。队列形态包括单队列,并联式多队列,串联式多队列以及杂乱队列这四种形态。并联式多队列就是允许在多个窗口的每一个窗口前形成一个队列。到达顾客可根据队列的长短在开始排队时选择一个队列进行排队。串联式队列顾名思义就是指多队列串行形成多个队列,顾客在一个队列接受服务后,再去下一个队列排队接受服务。杂乱队列就是指串联并联队列会杂乱无章的分布。

排队模型仿真的主要目的是寻找服务设置和服务的对象之间的最佳的配置,使得系统具有最合理的配置和最佳的服务效率。马尔可夫过程是研究排队系统的主要方法。马尔可夫过程是一种特殊的随机过程,它具有无后效性的特点,其状态空间是有限的或可数无限的。这种系统中从一个状态跳转到另一个状态的过程仅取决于当前出发时的状态,与之前的历史状态无关。马尔可夫链作为研究排队系统的重要工具有广泛的应用。但并不是所有的排队系统都可以抽象成严格意义上的马尔可夫过程,因此随着排队过程的发展,马尔可夫链也有了许多的扩展模型和再生方法使得马尔可夫链有更加广泛的应用,例如嵌入马尔可夫链、补充变量法、拟生灭过程等。本节首先介绍一下最严格意义上的马尔可夫链,按照时间来划分可以分为两类,离散时间的马尔可夫链和连续时间过程。

四、本文研究的主要内容

本文从政府的立场考虑,围绕如何成功地将REITs应用于公租房建设融资,结合国内相关形势与政策和现有的国内外经验启示,以REITs在公租房建设融资中应用的运作为主要研究对象。除绪论和结论部分,本文的主要内容集中在2至5章,共4部分内容:第一部分,研究国内外REITs的应用经验及其与保障性住房结合的成功经验,国外主要考察美国和亚洲的典型国家与地区,包括日本、新加坡和香港,国内由于经验很少,主要考察中信一凯德科技园投资基金和汇贤产业信托这两个典型的案例。第二部分,深入研究我国发展公租房REITs的必要性和可行性,其中必要性分析指出REITs是拓展公租房建设融资渠道和提高公租房建设管理效率的重要途径,可行性从经济金融环境和法规政策这两大方面进行了详细分析。第三部分,针对目前国内公租房管理现状,详细阐述了目前REITs在公租房建设融资中运作,包括REITs的基本模式和运作流程,并进一步深入研究了REITs内部参与各方的权责关系和利益分配,从而提出了代理人的选择机制和激励机制。值得指出的是,此时政府除了担任REITs补贴的支付者,更主要的,政府还是REITs投资人的代表身份,在REITs运作的不同阶段,政府以不同的身份参与REITs的内部博弈。第四部分,从政府作为监管者的角度,针对REITs在我国公租房建设融资中的应用提出了一系列政策建议,包括政府应当健全REITs和公租房相关的法律法规,并建立一套针对REITs的全方位的监管制度。

五、写作提纲

致谢5-6

中文摘要6-7

ABSTRACT7

第1章绪论10-17

1.1研究背景与意义10-11

1.1.1研究背景10-11

1.1.2研究意义11

1.2研究现状11-15

1.2.1国外研究现状11-12

1.2.2国内研究现状12-15

1.3论文内容与结构15-17

1.3.1论文主要内容15

1.3.2论文结构15-17

第2章国内外REITs的应用经验及启示17-35

2.1美国REITs的应用经验17-26

2.1.1美国的REITs及其在廉租房建设中的应用17-21

2.1.2美国REITs的运作模式21-26

2.2洲典型国家和地区REITs的应用经验26-29

2.2.1日本REITs的运作模式26-27

2.2.2新加坡REITs的运作模式27-28

2.2.3香港REITs的运作模式28-29

2.3我国REITs的应用经验29-32

2.3.1中信—凯德科技园区投资基金29-30

2.3.2汇贤产业信托30-32

2.4国内外REITs的经验比较及启示32-35

2.4.1国内外REITs的经验比较32-33

2.4.2REITs在我国公租房建设融资中应用的经验启示33-35

第3章REITs在我国公租房建设融资中应用的必要性与可行性分析35-43

3.1REITs在公租房建设融资中应用的必要性分析35-37

3.1.1REITs是拓展公租房建设融资渠道的重要途径35-36

3.1.2REITs在提高公租房建设管理效率的重要途径36-37

3.2REITs在公租房建设融资中应用的可行性分析37-43

3.2.1经济金融环境宽松,民间资本充裕37-41

3.2.2法律法规导向,政策利好不断41-43

第4章REITs在我国公租房建设融资中的运作43-64

4.1REITs在我国公租房建设融资中的基本模式43-47

4.1.1设计原则43-44

4.1.2基本形式选择44-45

4.1.3组织结构搭建45-47

4.2REITs在我国公租房建设建设融资中的运作流程47-50

4.2.1设立发行阶段47-48

4.2.2运营管理阶段48-49

4.2.3终止清盘阶段49-50

4.3REITs在我国公租房建设融资中的运作机制50-64

4.3.1REITs运作中的代理问题50-52

4.3.2代理人选择机制52-56

4.3.3代理人激励机制56-64

第5章REITs在我国公租房建设融资中应用的政策建议64-68

5.1健全法律法规体系64-66

5.1.1建全REITs的法律法规体系64-65

5.1.2完善公租房的相关法律法规65-66

5.2建立REITs的监管制度66-68

5.2.1明确政府监管主体及职责66

5.2.2建立REITs信息披露制度66-67

5.2.3引导社会公众进行监督67-68

第6章结论与展望68-70

6.1论文主要工作及结论68

6.2有待进一步研究的问题68-70

参考文献70-73

124 评论

相关问答

  • 关于可行性分析论文范文写作

    论文可行性分析怎么写1.论文可行性怎样写一、首先就是提出论题焦点二、说明历史材料证明该论题有哪些关点被证明三、提出你本人同意或是新的证点,并举证四、还可能存在的

    会飞的猪lucky 5人参与回答 2023-12-09
  • 关于可再生能源论文范文写作

    未来能源十步走 人类将摆脱对石油的依赖据7月号《大众科学》(注:中文版《科技新时代》)报道,石油价格一路上扬,“石油危机”成为目前最流行的词汇,很多人甚至产生了

    ~凭凑不齐~ 2人参与回答 2023-12-11
  • 关于马尔可夫链论文范文写作

    谁一个、、论文不才交么……生物信息在生物学研究中的作用。生物信息是指生物体中包含的全部信息,如基因组信息、蛋白质、核酸、糖类等生物大分子的结构等。生物信息对生物

    Jingelababy今 4人参与回答 2023-12-06
  • 关于伍尔夫的毕业论文

    百度百科有。 我写的毕业论文就是关于她的

    号仔在厦门 3人参与回答 2023-12-10
  • 关于格萨尔论文范文写作

    美国作为一个只有200年历史的国家,美国并不像中国一样拥有悠久的历史 文化 底蕴。下文是我为大家整理的关于美国文化论文的 范文 ,欢迎大家阅读参考! 从

    宝妈妈爱吃醋 2人参与回答 2023-12-11