sojisubyun
量子力学从诞生至今也不过区区一百多年,但是却像一头洪荒猛兽,一举打破了整个经典物理的认知,成为人类 历史 上最伟大的物理理论,人类的科学也因量子力学的发展大幅度进步。 如果我们回顾 历史 ,量子力学这个幽灵正是从光电效应现象被发现而随之被释放出来的,可以说光电效应的发现一脚踹开了量子力学的大门,而之后爱因斯坦利用量子论对光电效应进行了成功解释,则打开了人们对于量子论的崭新认识,光电效应的发现到被解释,也体现着量子论的发展,并对量子论的发展意义重大。
通俗来讲,光电效应是指光束照在金属表面时,会使其发射出电子。 这个现象非常奇特,本来电子被金属表面的原子束缚的老老实实,奇怪的是,一旦被一定光线照射时,这些电子就开始不安分起来,想要脱离原子的束缚,四处逃窜。由于这种现象的主角是光与电子这“两位大佬”,因此大家就把它称之为光电效应。
更有趣的是,这个光电效应还比较顽皮,它并不是说只要有光照射在金属表面上,就一定能够打出电子来,要想实现它,还要对照射光提要求。
人们发现,对于同条件下的同种金属,光能不能从金属表面打出电子来,取决于光的频率(可见光中,从紫到蓝到绿到黄到红,频率逐渐降低,紫光频率最高,红光频率最低)。更神奇的是, 频率较高的光能够打出能量较高的电子来,但是频率较低的光则完全打不出电子来。
于是有人想,那如果用很强的低频率光(红)去打,或者用很弱的高频率光(紫)去打呢? 结果发现电子这位爷只认频率不认强度。 哪怕是再强的低频率光也打不出半个电子来,再弱的高频率光也能打出电子来,不过在高频率光的情况下,改变光的强度可以改变打出电子的数量。
小结:当一定光照射在金属表面,金属表面能够发射电子,此即光电效应。光是否能够在同种金属表面打出电子来,取决于光的频率而非强度。
海因里希-赫兹是德国的一名天才物理学家,他的老师是大名鼎鼎的基尔霍夫和亥姆霍兹。赫兹对于电磁学领域贡献极大,因此频率的单位赫兹(hz)就是以他的名字命名的。赫兹与光电效应的意外相遇,着得从麦克斯韦方程组与电磁波说起。
伟大的麦克斯韦在19世纪将电场高斯定律、磁场高斯定律,法拉第电磁感应定律,麦克斯韦-安培定律(全电流定律)四个方程总结成麦克斯韦在组,阐述了变化的磁场产生电场,变化的电场产生磁场,并且从理论上预言了电磁波的存在,前无古人般的将电与磁统一起来。
然而,麦克斯韦只是从理论上完美的证明了电磁波的存在,并没有真的证实电磁波存在。 接下来就轮到本文的主角之一赫兹先生登场了。证实电磁波的存在并不是别人,正是赫兹。 赫兹在他的实验室证实了电磁波的存在,为电磁学大厦完成了封顶,但是正是在证明电磁波存在的实验当中,赫兹一不小心打开了量子力学的大门,发现了光电效应的存在。
在赫兹证明电磁波存在的实验当中,赫兹发现当有光照在金属接收器上时,电火花出现的容易一些,这个现象则是最初版本的光电效应。 不过这个现象并没有引起赫兹足够的重视,他在论文里有提到,但是他并没有去仔细研究。 非常不幸,赫兹也没有足够的机会对其进行研究。天妒英才,赫兹年仅36岁时便去世了。 而赫兹并不知道,他这个发现,实际上踹开了量子力学的大门。人们时常畅想,如果上天能让赫兹活得更久一点,说不定量子力学的发展进程能够提前一些。
谈及爱因斯坦,人们听的最多的可能是狭义相对论与广义相对论,但是对于光电效应的解释其实也是爱因斯坦的经典之作,更是让爱因斯坦因此获得了诺贝尔物理学奖。
前面提到过,在光电效应中,电子这位大爷只认光的频率,不认光的强度。 在当时的认知中,光是一种波,波的强度即代表了能量。按理说,由于电子是被原子束缚在轨道上,强度越高,能量越高,就应该越容易将电子打出来。 但是实际上如果光的频率低,哪怕再强的强度,也无法打出电子来,也就说,光的频率决定了能否打出电子来,而光的强度决定的是打出电子的数目。 这让当时的科学家们非常困扰,百思不得其解,直到天才爱因斯坦横空出世。
爱因斯坦解决这个问题的思路与其他人有些不一样,他借用了普朗克先生的量子假说(普朗克假设,黑体在吸收或者发射能量的时候,并非连续的,而是分成一份一份的能量,这一份能量的大小等于普朗克常数乘以频率,并将这一份能量称之为量子)。
光电效应,频率越高,越容易打出电子;单个量子的能量等于普朗克常数h乘以频率v,频率越高,单个量子能量越高。
电光火石之间,爱因斯坦忽然看见了什么。 提高频率,单个量子能量越高。那么,如果光不是连续分布的,而是一种量子呢? 一切问题刹那间迎刃而解 ,提高频率,单个光量子能量越高,就越容易打出电子,单个光量子的能量大于金属原子对电子的束缚能,就能够打出电子。 这正好解释了为什么频率决定了能否打出电子。而提高光的强度,则对应着提高光量子的数量,光量子越多,打出来的电子越多,强度决定了打出电子的数量。好了,先生们,现在光电效应被完美解释。
而后爱因斯坦根据这个思路写出一个方程, 等号左边是被打出来的电子具有的动能,等号右边是单个光量子的能量减去打出电子所需要的最小能量。
我们需要注意到,虽然爱因斯坦成功解释了光电效应,但是这有一个前提,这个前提是:普朗克的量子假说。 爱因斯坦在这里对于 光进行了量子化处理,认为光是一种光量子。 在当时,光被认为是波,波是连续的,而量子是一份一份的,不连续的。 爱因斯坦此举无疑是挑战原有的经典物理体系,是天才的想法,更是看起来离经叛道的想法。
其实在普朗克提出量子假说后,普朗克本人都不太相信,量子到底是个什么东西,到底存在吗,普朗克本人不确定。而爱因斯坦运用量子论解释了光电效应,这是开创性的工作。 毫无疑问,爱因斯坦使用量子论观点,成功解释了光电效应,这无疑是对量子力学正确性的一种巨大肯定。
量子论对于光电效应的成功解释为量子力学的发展注入了强大的力量,更是对量子论的进一步发展,是量子论建立过程中的里程碑事件。 这让人们正式把量子论拿到台面上来疯狂讨论,在此之后,量子论进入了一个高速发展的时期,薛定谔,德布罗意,海森堡,波恩们你方唱罢我方登场,开启了量子力学黄金时代。
参考文献:
【1】曹天元. 上帝掷骰子吗:量子物理史话[M].2006.
【2】Feynman. The Feynman Lectures on Physics[M].2000.
【3】周世勋. 量子力学教程第二版[M].2008.
【4】曾谨言. 量子力学[M].1990.
毛毛爱囡囡
物理学家,是指探索、研究世界的组成与运行规律的科学家。这是我为大家整理的关于物理学家学术论文,仅供参考!
对物理学家失误的解读
摘 要:通过在物理教学中客观介绍物理学家的失误,从而正确认识科学发展的曲折和科学家付出劳动的艰辛,并在实际探究的过程中体验物理学家研究问题的方法,发展科学探究所必需的创新思维,从而提高学生科学探究的能力。
关键词:失误;科学探究;创新思维
中图分类号:G420 文献标识码:A
文章编号:1992-7711(2012)10-081-1
在物理教学中,我们更多地介绍了物理学家成功的、正确的一面,而往往忽略了他们的失误。在物理教学中客观介绍物理学家的失误,通过对他们在特定历史条件下酿成失误原因的剖析,对中学物理教学具有积极的意义。
一、在物理教学中客观介绍物理学家的失误
事实上,物理大师也会走弯路,有失误。在物理学发展的过程中,这样的事例可以说是屡见不鲜的。发现放射性元素的贝克勒尔认为要找到比铀的放射性还要大得多的元素是不大可能的;牛顿推算光在介质中的速度比真空中大;电磁波的发现者赫兹由于实验的局限而错误地认为阴极射线不带电。
中子发现的历史更值得回顾。在查德威克发现中子前,在实验中已有迹象表明在核中可能存在一种中性子。例如,1930年德国物理学家玻特和他的学生利用α粒子轰击铍元素时,发现产生了一种穿透力极强的射线。后来居里夫人的女儿I?居里和她的丈夫约里奥对这种射线进行了研究。他们将这种射线射到石蜡上,测到了有反冲质子从石蜡放出,他们认为这反冲质子是由这种不带电的的射线所轰击出来的。但遗憾的是约里奥-居里夫妇和玻特等人都没能抛弃传统的旧观念,而断言为这种射线正是大家所知的Υ射线。太可惜了!尤其对约里奥-居里夫妇而言,只要根据打出质子的动能,仔细地推算一下,假如入射粒子是Υ光子的话,那么它的能量将达几十兆电子伏,要比实验测得的这种未知中性粒子的能量大得多,于是就会发现,这种未知中性粒子不可能是Υ射线。可惜旧的传统观念太深了,以致快到手的成果丢掉了。在正电子的发现过程中,同样的失误又一次发生在约里奥-居里夫妇身上,使他们成了正如恩格斯所描述的“当真理碰到鼻子尖上的时候,还是没有得到真理”的人。
纵观物理学家们的失误,造成他们作出错误分析或错失了重大科学发现的主要原因有两个:一是科学发现和创造是人类向未知领域不断探索的一个过程,而这个过程必然是复杂的、艰难曲折的,在这样的过程中出现一些失误是难免的;二是传统思想的束缚,科学发现和创造需要丰富的想象力,需要新思想、新观念,因循守旧、墨守成规就不可能作出科学发现,但突破传统观念总是非常不容易。
二、在物理教学中介绍物理学家失误的积极意义
在物理教学中,教师引导学生认识物理学家的失误,分析失误的原因,似乎会使学生产生对科学的怀疑,对科学家的不敬,在时代呼唤更多创新人才的今天,这并非不是一件好事,将有利于学生体会到人类认识自然,改造自然是个曲折艰苦的过程,是个反复修正、反复深化的过程;有利于确立不怕挫折的信念,增强学习中的毅力;有利于学生打破思维定势,活跃课堂气氛,培养创新思维能力;有利于树立学生挑战权威,服从真理的求知精神。
当然,仅仅介绍物理学家的失误,并不能达到上述目的,更要注意向学生讲述物理学家对待失误和挫折的科学态度和不屈的探索真理的精神。约里奥-居里夫妇不仅错失了发现中子的良机,后来又错失了发现正电子的机会。但他们从失败中吸取教训,始终以饱满的工作热情、坚忍不拔的意志投入研究工作,功夫不负有心人,他们终于在1934年获得了20世纪中最重要的发现之一——人工放射性,并荣获了诺贝尔物理学奖。中国科学家王淦昌教授因为自身或客观条件的限制在发现中子、验证中微子存在等物理研究方面几次和诺贝尔奖擦肩而过,但他并没有放弃对科学热诚的追求,而是进一步拓展研究领域,在众多领域里提出了自己独到的见解,直到年逾90,仍不时到研究室去,他提出的激光引发氘核出中子的想法,成为惯性约束核聚变的重要科研项目,一旦实现,这将使人类彻底解决能源问题。
在物理教学中引导学生辨别物理学家的失误和科学上的也是值得重视的一个方面,法国物理学的权威布朗洛发现N射线就是一场巨大的。对科学史上的揭示显然可以使学生正确理解物理学家的失误,而激发学生对科学家们由衷的敬佩。在实际的教学中我们似乎更应该让学生在进行相关科学探究的实践中重复物理学家的失误,比如在讲电磁感应相关内容时,笔者有意安排了这样的实验,将电流表的表面背对学生,在插入磁铁后,让学生跑到讲台后看指针的读数,学生看过常常露出不解的神情,“指针没动啊!”可磁铁确实在线圈中啊!如此,模仿了当年科拉顿所做实验的情景,并设置了相关的问题使学生明白科拉顿的失误和法拉第的成功在创新思想上的不同之处。
三、在物理教学中介绍物理学家失误的几点反思
1.介绍物理学家的失误,促进新的课程资源不断生成。
正视并合理开发日常教学中的错误资源可以丰富课程内容,激发学生的参与热情,促进新的课程资源不断生成,对师生创造性智慧的激发会起到十分重要的作用。为此,我们可以利用学生的错误激发认知冲突,促进学生思维碰撞;抓住学生因知识经验和思维方式不同而出现的错误的观点和想法,引导学生合作交流,促进生成;不轻易剥夺学生自主发现错误的机会,为教学的有效介入创造最佳时机。
2.介绍物理学家的失误,促进教师更好地锤炼教学艺术。
既然物理学家都可以有失误,对我们教师来说在教学中的失误也就没必要去遮遮掩掩。在教学中,教学双方也会因为各种情况而发生错误,错误可能来自学生,也可能来自教师。对于学生的错误,我们常常能从容应对,对于自己的失误,我们也不能回避,而是要认真反思,究其原因,寻其策略,从而提高教学设计能力和课堂教学水平。错误的价值有时并不在于错误本身,课堂教学中的错误,对学生来说是一次很好的锻炼机会,对老师来说也可以是一次机遇,在生成性的教学中教师正确处理失误是可以锤炼教学艺术,提高自身的专业水平的。
物理学家阿伯拉罕・派斯和他的物理学史著作解读与述评
摘 要:本文主要是对阿伯拉罕・派斯进行评述,探究其对于整个物理学做出的巨大贡献。与此同时,从其著作方面入手,加强关于著作方面的科学解读,希望能够充分继承这位伟大物理学家的精神,对其贡献进一步探究,从而推动整个物理学的不断发展。
关键词:阿拉伯罕・派斯 物理学史 著作 解读 评述
2000年,作为做出杰出贡献的一位伟大物理学家,同时又是一位科学史作家,阿伯拉罕・派斯不幸去世。派斯去世的原因,主要是心脏病发作,他最后的时光在哥本哈根度过,终年82岁。
派斯,1918年出生于荷兰,属于传统犹太人。派斯的中小学教育始于阿姆斯特丹。随后,凭借着自身优异的学习成绩,他非常顺利地进入大学继续学习和深造。1938年派斯顺利毕业,并获取了两个学位,一是物理学,二是数学。但派斯并没有满足于此,而是来到乌得勒支大学,进行个人学术的进一步深造,追随导师乌伦贝克。后来乌伦贝克定居美国,因此派斯的硕士毕业论文,由罗森菲尔德进行有效指导并完成。最终派斯在1940年硕士顺利毕业,取得了相应的硕士学位。然而在当时,德国已经发动世界大战,并逐渐占领荷兰。第二年,德国宣布,7月14日之后,整个荷兰的任何一所大学,严格禁止犹太人考取博士。这件事无疑影响了派斯,他努力赶写博士论文,限期真正到来之前,他最终顺利完成论文答辩。
纵观派斯的整个求学生涯,真是十分不易。然而,派斯随后将要面对的处境更加危险和艰难。当时,纳粹分子对犹太人进行压迫,这也使当地诸多物理学家,为免于遭受迫害而选择逃避,离开了培养自己的大陆。但是派斯不同,他没有离开故土荷兰。也正因为如此,战争爆发后,派斯提心吊胆,整天需要东躲西藏。访问他的当地物理学家也越来越少,除了克拉默斯,派斯较为重要的朋友。克拉默斯访问时,一般都带科学文献,两个人进行物理学知识的相关探讨。克拉默斯本来在莱顿大学承担教授职务,但后来,犹太人解雇现象较为严重,教授对德国人的残暴行为进行了抗议,德国占领大学之后,勒令当局关闭了学校。这对派斯的日常研究,即量子电动力学,造成了极大的不便。每当回首往事,派斯都感到非常不堪。荷兰当地犹太人,包括派斯的妹妹,普遍开始被抓,然后进入死亡集中营,遭到德国人残酷的杀害。而派斯自己,幸运的是能够免于这场灾难。灾难具体情况,详见其自传体著作《欧美记事》。
第二次世界大战结束之后,1946年,派斯到达哥本哈根。在那里,派斯会见了波尔,与其一家人相处融洽。与此同时,他与波尔展开了知识方面的沟通,彼此交流十分惬意。在波尔的大力推荐下,1946年秋,派斯前往美国进行访问和调查,访问的具体地点为普林斯顿,当地的一家高等研究所,但是在当时,这个研究所成立时间不长,物理学的相关研究并没有取得杰出成果。不过研究所的物理学家鉴于自身多年的经验,告诫派斯,研究过程中,如果一味闭门造车,是绝对行不通的,需要广泛涉猎。派斯听取了同行的建议,决定不再回欧洲,留下来潜心研究物理学。
派斯刚刚来到美国的时候,量子电动力学的研究取得了革命性的进展,理论物理学也得到了极大的发展。1947年,设尔特岛会议顺利召开,派斯有幸受邀参加。在这次会议上,施温格做出了科学量子力界的报告,报告非常详细。与此同时,“费曼图”这一理念得以提出。
派斯深深明白,量子电动力学领域,今后势必具有广阔的发展前景,但是这似乎已经和自己的关系不是那么密切了。尽管这方面的雄心有一定的挫败,但是派斯并没有被真正击败,而是转向宇宙线的相关领域。派斯变得更加努力,在加强探索的同时秉承更加积极的态度,针对现象进行科学合理的解释。基于此,派斯得以明确自身的方向,并着眼于基本粒子,研究工作也得到了充分的贯彻落实。
派斯经过大量研究,逐渐提出了协同产生规律等方面的内容,这在日后得到了有效证明和确立。后来,新量子数即奇异数,诞生并发展,关于这方面,派斯曾经与盖尔曼展开过合作,但是实验研究最终失败。
派斯仍然不放弃进行研究,最终提出了K介子混合理念。基于物理学本质来说,量子力学得到了充分诠释,态叠加原理也得到了完善。但是很多物理学家不禁产生了疑问,粒子混合究竟能否符合实际?然而,我们如果站在量子力学角度进行分析,透过基本粒子的本质,会发现观察量具有自带属性的特点,本身存在相应特征和形态。在态叠加原理的应用过程中,守恒电子数一旦满足这一相同条件,粒子混合就能实现。经过派斯等人的共同努力,K介子系统问题得到了充分解决。在这之后,粒子混合不断涌现。不久,科学界又提出了量子排这一概念。通过量子排方面的科学研究,粒子物理学得到了更快的发展,最终在一定程度上推动了原子物理学的发展,并对其形成一定反哺。基于此,量子力学概念得到普及和推广。量子排现象之所以提出较晚,很大一部分原因是人们不敢对其进行大胆想象。
派斯在其他领域同样做出过一定贡献,比如G宇宙领域。然而,在70年代末,派斯逐渐转向物理学史,注重加强这方面的探索和研究,朝着作家的方向发展,并在这方面进展顺利,例如爱因斯坦传记得到了广泛好评,波尔传记也同样大获成功,中文出版量相当可观。还有关于基本粒子方面的科学史巨著《基本粒子的物理学史》的中译本也问世。派斯造诣十分高深,熟知理论物理,对物理学史的叙述表现出一种深刻的洞察。除此之外,派斯语言能力超强,除了母语荷兰语外,他还熟悉地掌握了英语、法语、德语、丹麦语,这为他的科学史研究提供了极大的便利。
派斯的物理学著作,内容更加凸显真实性,如对科学界出现的错误等都进行了如实体现。特别是曾经承受的挫折、物理学走过的弯路,以及物理学家在长期探索过程中经历的迷惘、物理学家个人存在哪些不足等,他都较为直率地指出。
比方说,在爱因斯坦传中,派斯对爱因斯坦的不成熟之处以及其研究中走过的弯路、犯过的错误都进行了毫不客气的说明。再比如,书中指出,马赫原理虽然没有对物理学理论起过推动作用,但它仍然可能是未来的研究课题。
虽然派斯对波尔十分尊重和爱戴,但在波尔传记中对其并未有讳言。比方说,在量子力学领域波尔失误不少,尤其是波尔还曾否定已经被广泛认可的能量守恒定律,对此派斯在书中也如实进行了记录。除此之外,他还指出了哥本哈根阵营中泡利、狄克拉等人对波尔的不满之词。
由此可见,派斯在潜心著作的过程中,始终秉承公允的态度,并且敢于分析伟大物理学家的不足,敢于说出真话,态度十分端正,因而学术界对其十分认可和重视。派斯尤其重视书名,绞尽脑汁之后,才能拟定完成,而且一定要别出心裁。
1963年,派斯最终选择离开普林斯顿大学,来到了纽约,进入洛克菲勒大学工作,直到退休。1990年,派斯同他的第三任妻子――丹麦人类学家尼可莱森结婚,结婚之后,派斯每年往来穿梭于纽约和哥本哈根之间。2000年,派斯的《科学英才:20世纪物理学家群像》问世,这部著作是派斯从个人视角对自己所认识的物理学家进行的速写,是他的最后一部著作。
参考文献:
[1] 史明宇,陈绍军.“社会事实”与“自然物质”客观性存在的条件比较――社会学与量子力学的对话[J].理论月刊,2013(2).
[2] 刘昊淼.浅析量子力学无限方势阱――通过无限深势阱来理解量子力学非定域性[J].神州(上旬刊),2013(9).
[3] 胡化凯.20世纪50―70年代中国对哥本哈根学派量子力学诠释的批判[J].科学文化评论,2013,10(1).
[4] 张占新,莫文玲,王凤鸣等.通过计算氢原子的玻尔半径,加深对量子力学的理解[J].大学物理,2011(30).
[5] 朱安远,朱婧姝,郭华珍等.20世纪最伟大的科学巨匠――阿尔伯特・爱因斯坦(下)[J].中国市场,2013(46).
吃吃吃吃吃Chen
我也是在自学本科物理。我用的书是《新概念物理教程》第二版。一共五卷。《力学》《热学》《光学》《电磁学》《量子物理》。北大的赵凯华陈熙谋和中山大学的罗蔚茵合写的,高教出的。我觉得总体来说还不错,有些地方太注重数学和逻辑上的严谨性了,反而失去了对物理直观的把握。但是就我看过的大学的各种教材,包括自动化的电路数电方面的,似乎都有这个问题。但是我觉得就深度和广度上来说这套教程还是很不错的。楼上说的费恩曼的书我也有,确实很经典,但是我个人认为因为它毕竟是通过上课的录音整理成一套讲义的,而且费恩曼只讲过这么一次,所以尽管它的内容非常丰富,而且看待事物的方式很有启发性,但是作为一套系统的教材,在内容编排上有些凌乱,条理不是很清晰。最重要的是我认为作为初学者,对于概念的明确以及记住公式的形式很重要。但是费恩曼的讲义太注重概念之间的联系性以及它的逻辑和数学背景,反而使概念本身显得不是很明确,但是这对于不是很熟悉甚至完全不知道这些基本概念的人来说是很不利的。因为对于概念不熟悉有些时候你甚至会觉得不知所云。所以我个人的看法是,先用一套比较成体系的本科生教材学习一遍,当对于所有这些基本概念都很明确之后再看费恩曼的讲义就会感到受益匪浅。对于理论物理来说(应用物理我不是很了解,我基本只对最本质的理论有兴趣)数学很重要。学好高等数学和线性代数是最基本的。这两种书我建议就用高教版的就行。当然还有概率论与数理统计,也用高教版的(其实概率论我用的是人教版的,也不错,比高教的贵点儿)。之后我建议再学学数学分析和高等代数,这两个就是高数和线代的升级版。高数和线代偏重于应用,对于逻辑推导要求不是很高,很多定理和推论没有证明。而数学分析和高等代数则有比较严密的逻辑推导证明过程。实际上高数和线代就像我告诉你一件事按什么步骤做就能做出来,但是却不告诉你为什么这样就行,而数学分析和高等代数则告诉了你为什么。只不过这个为什么背后的逻辑稍微复杂一些。但是我不建议直接学数学分析和高等代数。因为学物理时主要还是把数学当作一种工具,我会用,能用它做出我想做的事就行了,对于背后的原理不一定都来了解。但是学数学分析和高等代数是为了以后研究做准备,那个时候就不能照猫画虎了,只有真正确确实实明白背后的原理,才能清晰地把握这些原理进而通过严谨的逻辑推理搞清楚这个宇宙的一些奥秘。之后还要学数学物理方法,它包括复变函数和数学物理方程。这个我还没有看到特别好的教材。如果你用的是合写成一本的数学物理方法,就应该再买一本单独的积分变换。当然你也可以用高教出的分成两小本的复变函数和积分变换。然后再买一本单独的数学物理方程。最后,做题非常重要。无论是物理还是数学。有时候你看书可能觉得一头雾水,那是因为概念不熟悉,做题可以很快使你搞清楚状况。所以做题非常非常重要。就数学方面来说,还可以学一下解析几何。学广义相对论之前要学张量分析。不知道你现在多大学到什么程度。有兴趣我们可以交流一下。
有关量子力学论文,题目好象是波函数的:量子力学精选论文:
物理小论文(力学)世界上有确定的东西吗?正如大家所知,1927年3月,海森堡在《量子论的运动学与动力学的知觉内容》论文中,提出了量子力学的另一种测不准关系,海森
古典文学常见论文一词,谓交谈辞章或交流思想。当代,论文常用来指进行科学研究和描述科研成果的文章,简称之为论文。它既是探讨问题进行科学研究的一种手段,又是描述科研
〔摘要〕 2012年《复印报刊资料·科学技术哲学》共转载文章131篇,这些文章呈现出十个热点论题:现象学科学哲学、自然主义研究、心灵哲学与认知哲学、生物学中的哲
进入学校的图书馆网站,再进入"中国期刊网"等数据库网站,可下载相关的论文