• 回答数

    2

  • 浏览数

    280

小七-279928530
首页 > 学术期刊 > 原子粒子类比研究论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

zeeleemoon

已采纳

我是一个小小原子,小的微不足道,但我确实是构成物质的粒子。我的结构探索历程真的很曲折,在很久以前有一个名叫道尔顿的人竟说我是一个不可分割的实心球体,我真的感到惊讶极了;接着一个叫汤姆森的人发现了我体内的电子,把我比作一个大西瓜,我很着急,为什么还没有人发现我体内最重要的东西呢?终于,卢瑟福发现了我体内的原子核,以及组成电子核的质子与中子,我的身世之迷终于被揭开了!其实我是不带电的,我的电子数与质子数相等,每一个电子和每一个质子各分别带一个负电荷和一个正电荷,所以电荷抵消了,我也就不显电性。你别看我的原子核小,但是组成它的质子和中子质量却很大,所以质子和中子的数量决定我的质量,同时质子数也决定着我的种类。虽然我的体积很小,但我的作用还是不可小觑的,我可以先构成分子,再构成物质,比如最常见的水――水是由水分子构成的,而每个水分子又是有两个氢原子和一个氧原子构成的,说到底,水的构成少不了我们原子。还有,我还可以直接构成物质,比如说金呀,金刚石呀,金由金原子构成,金刚石由碳原子构成。这么贵重的东西都是由我们原子构成的,大家是不是觉得我的身价高了许多啊。一次偶然我进入了一所学校的化学实验室,然后迷迷糊糊间我扔掉了我的某些电子,我成了带正电荷的阳离子!我不再是一个电中性的原子了,我的质子数不再等于电子数了。我心中很不是滋味,开始成为离子的新鲜与好奇消失的无影无踪,我为不再是自己了而难过。好在有另一种带负电荷的阴离子和我一起构成新的化合物,多少为我减轻了一些失落感。但是,我还是很想念我作为一个小小原子时的生活!

316 评论

温暖三月5021

2003年7月30日,中国科学院高能物理研究所在新闻通报会上宣布,北京谱仪国际合作组最近发现了一个新粒子。北京谱仪合作组是由高能物理研究所和国内17所大学和研究机构及美国、日本、韩国和英国的物理学家和研究生组成的。这个新粒子是该合作组通过分析5800万J/ψ粒子衰变的事例数据,在分析粲粒子辐射衰变到正反质子的过程中发现的。这项研究成果的论文已在世界最具权威和最有影响的期刊《物理学评论快报》(2003年7月)上发表。这次发现新粒子的消息顿时引起了各方的广泛关注。人们都很想知道这是一种什么样的粒子?这一新发现有何物理意义?这是不是又是一个突破性的成就?要想回答这些问题,就需要了解一些粒子物理学的有关知识。人们最初是按粒子的质量大小将它们分为三类,并给每类一个统称。质量大的叫做重子,例如质子和中子;质量小的叫做轻子,例如电子和几乎无质量的中微子;大小介于两者之间的叫做介子,例如π介子。后来根据重子和介子都受强力支配的这一性质,把它们统称为强子。早期有些物理学家猜测介子由质子和反质子束缚态组成,但被后来夸克模型代替。1964年盖尔曼等人提出了关于强子结构的夸克模型。在夸克模型中,重子由三个夸克组成,而介子则由正反两个夸克组成。在初期提出的夸克模型中,只有u、d、s三种夸克。1974年,J/ψ粒子被丁肇中教授和里克特教授各自独立发现后,三种夸克的理论无法解释这种长寿命的介子,因此引入第四种夸克,即粲夸克c,而J/ψ粒子是由一个粲夸克(c)和一个反粲夸克组成的。这以后又引入了第五种夸克底夸克b和第六种夸克顶夸克t。到1995年为止,理论上预言的6种夸克都被实验发现了。J/ψ粒子在正负电子对撞中产额很高,J/ψ粒子的衰变是研究强子谱和寻找新粒子的理想途径。北京谱仪获取的5800万J/ψ粒子事例比国际上其他同类实验数据约高一个量级,为物理分析创造了良好的基础。这个新粒子的寿命非常短,因此也被称为共振态。所谓共振态,是一种不稳定的强子,它带有强子的诸如自旋、宇称、同位旋等各种量子数。共振态粒子一般都是通过强力衰变,因而寿命很短,大约10-20—10-24秒。根据量子力学能量和时间的不确定原理,不稳定粒子没有确定的质量,其不确定程度称为宽度(9),与粒子的寿命(τ)成反比(9=η/τ)。共振态粒子的宽度可以高达几百MeV,因而说新发现的粒子宽度很窄。尽管这个新发现的共振态的质量略小于质子与反质子的质量之和,正是由于共振态粒子的质量有一定的宽度,使得这个共振态仍有少量粒子的质量大于质子与反质子的质量之和,而衰变成质子与反质子。粒子物理实验研究在若干粒子的衰变中已观察到类似的现象。这次新发现的消息刚刚传出,欧洲核子研究中心著名的理论物理学家埃利斯(J.Ellis)就在一篇论国际最新进展的文章中评价说:“这一发现和世界上其他新的实验结果是令人惊异的,对发展强相互作用理论有着重要意义。”诺贝尔物理学奖获得者李政道教授也致信高能所表示祝贺,信中评价说:“这是一个十分重要的成果,也是物理学上很有意义的工作。”寻找多夸克态一直是国际高能物理实验的重要目标。在实验上早期发现的数百个介子共振态和重子共振态中,都没有多夸克态的确凿证据。最近,国际上有几个实验组在进行这方面的探索,取得了显著进展。而北京正负电子对撞机上的实验,新发现的粒子由于特有的性质,尤其是很窄的宽度而很难归结为通常的夸克—反夸克结合态,因而被推测为可能是一种多夸克态。有些物理学家认为,所发现的共振态粒子可能是重子反重子束缚态(多夸克态的一种)。广泛和密切的国际合作是高能物理研究基本特点。北京正负电子对撞机从设计之日起,就一直得到国际高能物理界,特别是李政道教授的大力支持。二十多年来,中国科学院和美国能源部每年都举行会谈,重点讨论双方在北京正负电子对撞机和北京谱仪的合作。国家自然科学基金委员会对北京谱仪的研究工作也一直给予大力支持。北京正负电子对撞机和北京谱仪在1999年初完成了升级改造后,整体综合性能大幅度提高,每天获取的数据量是改造前的3—4倍,数据的质量良好。北京谱仪国际合作组对这些数据进行了深入细致的分析和研究,此次发现新粒子是这批数据的重大物理成果之一。北京正负电子对撞机和北京谱仪运行在20亿—50亿电子伏特的能量区域,尽管在世界上这个能量不是很高,但属于国际高能物理实验研究两大前沿之一的精确测量前沿,具有重大的物理意义,不断出现新的重大成果,成为国际高能物理研究的一个新热点,竞争十分激烈。国家有关部门已经批准对北京正负电子对撞机和北京谱仪进行重大改造,预期加速器提供的数据量将提高两个数量级,探测器的性能也将大幅度提高。这个重大改造完成后,北京正负电子对撞机将能继续保持在粲夸克物理和强子谱等研究领域的国际领先地位。新的发现,也是新的挑战。高能所的科学家表示:目前我们的研究结果只是确定了这个新粒子的存在,要最终明确这个新粒子的基本性质和物理意义,还要北京谱仪合作组的中外科学家进一步做大量的深入细致的数据分析工作,更需要与国内外的理论物理学家密切配合,认真研究,也可能需要更大量的数据才能最终回答这些问题。 中美科学家日前在北京正负电子对撞机上首次发现一个新粒子。中科院高能所负责人说,各种分析研究已经确认这是一个新的粒子,而且可能是几十年前由科学家费米和杨振宁预言的多夸克态粒子。目前,中外物理学家正对这个新粒子的性质和衰变特性从理论和实验上做更深入的研究和讨论。北京时间7月1日消息,粒子物理标准模型中一种最难以琢磨的粒子再次逃脱了人们的视线,这或者说明希格斯粒子(Higgsboson)受到了压制,或者证明这种粒子根本不存在。这对于理解为何我们身处的宇宙有团聚物是非常关键的一步,但是世界最权威的美国国家加速器实验室(Fermilab)的最新预测表明至少在未来的六年内这项研究难有结果。北京时间7月3日消息,日本的物理学家已经发现了一种新的次原子粒子,它由5夸克组成而非通常情况下的2或3夸克。理论学家原先推测物质可能会由4个或者更多的夸克来组成,但是过去30多年所进行的实验表明很难印证这种推测。这项发现将刊登在7月4日发行的物理评论集中,势必将在粒子物理研究领域引发轰动效应,也会有助于加深人们对于早期宇宙的理解。

215 评论

相关问答

  • 3d粒子系统毕业论文

    闲来无事,仔细的学习一下粒子系统,也当是给自己做个笔记方便之后进行回顾。 引擎版本:Unity2018.3 创建方式: 1、Hierarchy-->

    文哥哥哥哥哥 2人参与回答 2023-12-07
  • 关于分子原子论文范文

    物理学力学论文篇3 浅析物理力学的产生及其发展 摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒

    吃吃吃货小两口 3人参与回答 2023-12-09
  • 一粒扣子本科论文范文

    我们正当少年,请记住:我们现在仍在人生的开头。请走好我们此生的开头,为我们之后的生活打下良好的基础。系好人生的第一颗纽扣主题征文有哪些?一起来看看系好人生的第一

    雾夜狂奔 2人参与回答 2023-12-12
  • 高能粒子对宇宙的影响研究论文

    这表明银河系内大量存在可将宇宙线加速到1PeV的‘拍电子伏特宇宙线加速器’(PeVatron),它们都是超高能宇宙线源的候选者,这就向着解决宇宙线起源这一科学难

    虾虾虾虾酱 4人参与回答 2023-12-05
  • 大型粒子对撞机方案研究论文

    粒子对撞机是在高能同步加速器基础大型粒子对撞机上发展起来的一种装置,主要作用是积累并加速相继由前级加速器注入的两束粒子流,到一定强度及能量时使其进行对撞,以产生

    听雨轩808 5人参与回答 2023-12-07