嘟嘟198887
数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。(—·) 人们已经创造了很多检测级数敛散性的方法,究竟用哪种方法较好呢?这不能笼统地回答.一般说来,使用起来较简便的方法,很可能适应的范围较小,而适应范围较大的方法,又往往比较繁难.就我们已经介绍的若干检测方法而言,对于判别一个数项级数的敛散性,可以从下面的思路来考虑使用某种比较恰当的方法: (1)首先,考虑当项数无限增大时,一般项是否趋于零.如果不趋于零,便可判断级数发散.如果趋千零,则考虑其它方法. (2)考察级数的部分和数列的敛散性是否容易确定,如能确定,则级数的敛散性自然也明确了.但往往部分和数列的通项就很难写出来,自然就难以判定其是否有极限了,·这时就应考虑其它方法. (3)如果级数是正项级数,可以先考虑使用比值判别法或根值判别法是否有效.如果无效,再考虑用比较判别法.对于某些正项级数,可以考虑使用积分判别法.这是因为比值判别法与根值判别法使用起来一般比较简便,而比较判别法适应的范围却很大. (4)如果级数是任意项级数,应首先考虑它是否绝对收敛.当不绝对收敛时,可以看看它是不是能用莱布尼兹判别法判定其收敛性的交错级数. (5)级数敛散性的柯西判别准则给出了判断级数收敛的充要条件,因此,从逻辑上讲,它适应于一切级数敛散性的判断。但是,要检测一个具体的级数是否满足这个判别准则的条件本身就不比检测这个级数是否收敛容易,因而一般在检测具体级数的敛散性时,使用柯西判别准则是有困难的,甚至是无法进行的.不过,对于某些具体的级数,使用柯西判别准则也是行之有效的.因此,我们也要考虑它的使用,特别是上述诸多方法行不通的时候。 (二) 回顾一下正项级数敛散性的判别法.比值判别法和根值判别法用起来较比较判别法方便,其原因是它只靠级数自身的特征来检测,而比较判别法却须去寻找一个恰当的比较对象.然而,从比值判别法和根值判别法的证明可以看出,它们实质上还是把所讨论的级数同某一几何级数作比较.这两种方法在实际应用时,都会遇到失效的情况.为什么会出现这种情况呢?这实质上是,把所有级数和收敛的几何级数相比,它的项比几何级数的项数值 大,而和发散的几何级数相比,它的项又比几何级数的项数值小.这也就是说,要想检验所论级数的敛散性,几何级数这把‘尺子’的精密度不够。人们发现p—级数是比几何级数更精密的一把“尺子”,而级数: 又比p—级数更为精密,称为对数尺子。仿照建立比值判别法的办法,人们将所论级数同一把比一把更精密的“尺子’相比较,建立了一个比一个适应范围更大但使用更加繁难的正项级数敛散性判别方法,如拉贝判别法,高斯判别法,等等.但是,如此建立的判别方法,无论适应范围多大,仍然会有失效的情况发生.因为人们证明过,任何收敛的正项级数都存在另一个收敛的正项级数被它优超,而任何发散的正项级数都存在另一个发散的正项级数优超它.因此,比较判别法是检测正项级数的敛散性的根本方法.从理论上说,恰当的比较对象总是客观存在的,因此,比较判别法适应于一切正项级数。然而,恰当的比较对象要实际寻找出来很难.因此,还是要建立象比值判别法那样实质上已有固定比较对象且使用起来很方使的判别方法.
SilveryBullet
比较(1/ln n)^10与1/n(1/ln n)^10/(1/n)=n/(ln n)^10当n趋于无穷时,极限也是无穷,因此(1/ln n)^10要比1/n收敛速度慢,因此它发散
小小小花花儿
先判断这是正项级数还是交错级数一、判定正项级数的敛散性1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步)。若不趋于零,则级数发散;若趋于零,则2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则3.用比值判别法或根值判别法进行判别,如果两判别法均失效,则4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等。二、判定交错级数的敛散性1.利用莱布尼茨判别法进行分析判定。2.利用绝对级数与原级数之间的关系进行判定。3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散。4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定。三、求幂级数的收敛半径、收敛区间和收敛域1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域。2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径。四、求幂级数的和函数与数项级数的和1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和。2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值。五、将函数展开为傅里叶级数将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系。
数学与应用数学毕业论文篇3 浅谈离散数学的应用及教学 我国传统数学教育模式内容相对陈旧、体系单一、知识面窄、偏重符号演算和解题技巧,脱离
关键词是从论文的题名、提要和 正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作计算机系统标引论文内容特征的词语,便于信息系统汇集,以供读者
如果这两个不行,你可以把这两篇论文综合一下哦
1/(n+1)
统计学分布形态有几种:正态分布(normal distribution)若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密