霸气甫爷
几何图形在生活中的应用金华四中 初一(9)班 毛以华 指导老师:方云兵在这个科技高速发展的时代中,几何图形已经成了生活中的”常客”,处处都有几何图形的身影,比如说:三角形的自行车架,圆形的窨井盖和汽车轮子,圆柱型的花盆等等,这种种说明几何图形与我们的生活是息息相关的,是不可分割的。材料一:窨井盖为什么是圆形的?1. 小学中我们学到过在周长相等的情况下,圆的面积最大,所以窨井盖也是用了这一原理,所以说,圆形的窨井盖所用的材料是最少。2. 圆有一个圆心,在圆内,直径都相等,而正方形的对角线与边长是不相等的,所以圆的承受力是最大的。3. 圆形的窨井盖还有便于运输的优点。材料二:为什么自行车架是三角形?1. 三角形有一种特性,就是三角形稳定性。任取三角形两条边,则两条边的非公共端点被第三条边连接 。∵第三条边不可伸缩或弯折 。∴两端点距离固定 。∴这两条边的夹角固定 。∵这两条边是任取的 。∴三角形三个角都固定,进而将三角形固定 。∴三角形有稳定性 。任取n边形(n≥4)两条相邻边,则两条边的非公共端点被不止一条边连接 。∴两端点距离不固定 。∴这两边夹角不固定 。∴n边形(n≥4)每个角都不固定,所以n边形(n≥4)没有稳定性。材料三:在生活中,还有许多由几何图形构成的商标例如奥迪(图1),雪佛兰(图2),宝马等等。在生活中几何图形的应用真是无处不在,人们利用几何图形的种种特性来方便我们生活。就如罗丹说的:“生活中不是没有美,而是缺少发现美的眼睛”。所以,生活中不是没有数学,而是看你有没有去发现它了。(部分内容摘自百度百科)
洛雪吟风
初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!
结合教学实际 撰写教学论文 提高自身素质撰写中学数学教育教学论文是教师探讨中学数学教学问题,总结教学教研实践经验、获得理论支撑的有效途径,是教师提高自身
几何图形在生活中的应用金华四中 初一(9)班 毛以华 指导老师:方云兵在这个科技高速发展的时代中,几何图形已经成了生活中的”常客”,处处都有几何图
随着教育科研意识的不断深化,很多教师希望把自己的研究成果,以论文形式公开发表. 根据笔者的切身经历,我认为初写数学论文的教师, 为了尽可能的少走弯路,应充分注意
初二数学论文篇二 初二数学两极分化的成因和对策 【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数
可以的首先是数学绘图软件,个人觉得几何画板这款软件是比较好的,不仅可以画简单的平面几何图形,也可以构造复杂的空间立体几何图形,利用其中的点、线、圆工具和多边形工