凡人帽子11
收音机是用“电磁感应”原理接收电磁波信号。通过一个金属体或线圈(也就是天线)将感应到的电磁波转换为电信号,再通过电路的处理和变换,最终转为声音。\x0d\x0aFM:频率调制\x0d\x0aAM:幅度调制 可以简单归纳为三步曲:第一步要接收到相应频率的无线电波,第二步是从无线电波上取出调制在其上的声音信息,第三步为把声音信息还原成人耳能听到的声音。下面我们较详细地来介绍这三个过程:\x0d\x0a\x0d\x0a1. 无线电已与我们人类的工作、生活密不可分,如广播、电视、无线通迅等,可以说我们是生活在无线电波的包围中。用于无线广播的无线电频率是非常众多的,一个频率对应一个电台的一套广播节目,而一台收音机一次也只能收听一个频率的广播节目。这就提出了一个最基本的要求:收音机应能有选择性地接收无线电波的能力。事实上,收音机首先靠其本身配置的天线将各种频率的无线电波接收进来,然后通过一个具有选择功能的电路来择取听众所需收听的电台频率,此时自然就要将其它频率的无线电波滤掉。这一选择过程就是我们常说的选台,书名应称之谓调谐。 \x0d\x0a\x0d\x0a2. 在接收到我们所需收听的电台高频电波后,下一步就是把"搭载"在电波上的声音信息取下来,前面我们已说过,这个"搭载"过程叫调制,那么现在把声音信号取下来则称为解调。解调是通过特别设计的电子线路来完成的。调制的方式有调幅和调频两种,相对应的,解调的方式或采用的电子线路也是不相同的。需要说明的是,从天线上直接接收到的无线电信号是非常微弱的,在通过调谐电路后还需经过放大电路放大到一定幅度才能送往解调电路。\x0d\x0a\x0d\x0a3. 从无线电波上解调出来的声音信息此时还是一种幅度很低的电信号,我们人耳是听不到的,还需用功率放大电路将其放大,再通过喇叭或耳机才能还原成我们真正能听到的声音。
A+黎明前的黑暗
收音机原理就是把从天线接收到的高频信号经检波(解调)还原成音频信号,送到耳机变成音波。由于广播事业发展,天空中有了很多不同频率的无线电波。如果把这许多电波全都接收下来,音频信号就会象处于闹市之中一样,许多声音混杂在一起,结果什么也听不清了。为了设法选择所需要的节目,在接收天线后,有一个选择性电路,它的作用是把所需的信号(电台)挑选出来,并把不要的信号“滤掉”,以免产生干扰,这就是我们收听广播时,所使用的“选台”按钮。选择性电路的输出是选出某个电台的高频调幅信号,利用它直接推动耳机(电声器)是不行的,还必须把它恢复成原来的音频信号,这种还原电路称为解调,把解调的音频信号送到耳机,就可以收到广播。自制收音机的方法:矿石收音机:首先准备一些材料,需要高阻耳机阻值在2000欧左右,也可以用舌簧喇叭,一段电线(做天线用)一个检波管(矿石检波管或者A2P9管)一个线圈,一个可变电容250pf左右。接下来就是制作过程:第一步:作天线,在离地面水平架设一条长大约25米长的电线,电线的两端要与架设无绝缘,避免信号泄漏,第二步:在电线中间接一条引线与你的线圈的一头连接,线圈的另一头接地线,第三步:把可变电容与线圈并联,第四步:然后把检波管的一端连在线圈接天线的一端上,检波管的另一端联在耳机的一端上耳机的另一端与线圈接地线的一端相连,第五步:带上耳机调动可变电容,就可以收听到不同电台。当然只是附近几个比较强的电台,如果想改变你的收听效果,还可以与耳机并联一个滤波电容。
jasmine1995
简介[编辑本段]过去俗称 半导体 (东北俗称 匣子)超外差式收音机:是指输入信号和本机振荡信号产生一个固定中频信号的过程。如果把收音机收到的广播电台的高频信号,都变换为一个固定的中频载波频率(仅是载波频率发生改变,而其信号包络仍然和原高频信号包络一样),然后再对此固定的中频进行放大,检波,再加上低放级,就成了超外差式收音机。这种接收机中,在高频放大器和中频放大器之间须增加一级变换器,通常称为变频器,它的根本任务是把高频信号变换成固定中频。而由于中频频率(我国采用465千赫)较变换前的高频信号(广播电台的频率)低,而且频率是固定的,所以任何电台的信号都能得到相等的放大量。另外,中频的放大量容易做得比较高,而不易产生自激,所以超外差式收音机可以做得灵敏度很高。由于外来电台必须经过“变频”变成中频频率才能通过中频放大回路,所以可以提高收音机的选择性。一般的超外差式收音机组成方框图如图1所示。主要构造[编辑本段]一、变频级从图1中可以看出,超外差式收音机的变频级包括混频器和本机振荡器两个部分。接收天线收到的高频调幅信号经调谐输入回路的选择,送入变频级的混频器。本机振荡器(由变频级本身产生一个等幅的高频信号)产生的高频等幅振荡电流也送入混频器。通常本机振荡的频率高于外来信号的频率,而且高出的数值要保持一定值,即中频频率。两种信号在混频器中混频的结果,产生一个新的频率信号,也就是混频器的根本功用是把输入信号的载波频率同本机振荡器的载频频率进行差拍在其输出端得到一个“差频”信号,即“中频”信号。这就是“外差作用”。我国收音机中频频率规定为465千赫。465千赫的差频信号仍属高频范围,只是因为它比外来信号的载波频率低,才称为“中频”信号。外来的高频调幅信号,经过变频以后只是变了载波频率,要求原来信号的调制规律不能改变,仍然调制在新的中频信号,所以变频级输出的中频信号仍然是调幅信号。如图2所示的变频电路是本实验套件的收音机线路中的变频电路。现对此电路工作过程叙述如下:Lab是绕在磁性棒上的线圈,Lab、Ca、Cat组成了高频调谐回路,Lb、Cb、Cbt、C3组成本机振荡回路。磁性天线接收到的高频调幅信号,经高频调谐回路的选择,由耦合线圈Lcd加到变频管的基极和发射极之间;本机振荡器产生的高频等幅信号(比外来信号频率高一个固定中频)通过C2、C1和R2也加到变频管的基极和发射极之间。我们知道半导体三极管的发射结(发射极和基极之间的P-N结)是非线性元件,所以当外来信号和本机振荡信号加在发射极--基极回路时发生混频,产生了我们需要的差频(465千赫)。我们再通过接在集电极回路中的L3组成的中频谐振回路(俗称中周),将被放大了的中频信号选取出来,由L3次级输出送至中频放大器。为了使本机振荡的频率和调谐回路的高频谐振频率之差始终为一固定中频(465千赫),在改变调谐回路的谐振频率时(选择所要收听的电台时),必须同时调整振荡回路的振荡频率,这叫“统调”。为了简化使用时的调谐手续,在收音机中,上述两个回路是采用一只同轴双连可变电容(Ca、Cb)进行调整的。常用的双连可变电容是等容式的。例如有270PF×2、365PF×2等规格。使用等容双连可变电容时必须在本机振荡回路中的可变电容Cb上并联一个小电容Cbt,适当地选取Cbt,以便使两个回路得到较好的统调,C3是垫振电容用以补偿波段高低端的统调偏差。电阻R1、R2组成偏置电路。L2是中波振荡线圈。L3是“中周”。二、中频放大极中频放大器是超外差式收音机的极其重要的组成部分,中放级的好坏对收音机的灵敏度、选择性和保真度等主要指标有决定性的影响。收音机里的中频放大器其工作频率为465千赫,用谐振回路作负载,这样可大大提高收音机的灵敏度和选择性。本实验套件的收音机中频放大器电路如图3所示。经过变频级变换成465千赫的中频信号通过中频变压器L3耦合至Q2基极,经过Q2放大后由第二只中频变压器L4耦合到Q3进行第二次中频放大,Q3既是第二中放的放大管,又是检波级,经Q3放大后的中频信号利用Q3的be极的PN结的单向导电特性进行检波。R3是第一中放管Q2的偏置电路,C4的任务之一是旁路中频信号;R4、R3、W1是第二中放管Q3的偏置电路。C5、C6是旁路电容,音频信号通过C7耦合到低放级。各极中频放大器之间采用中频变压器进行耦合。由于三极管输出阻抗较低,考虑阻抗匹配,所以电源供给从中频变压器初级中心头接入。同时次级大多数是不调谐的且圈数很少,以便与下一级所接的三极管输入阻抗小的特点相适应。三、检波和自动增益控制在超外差式收音机中,通常采用二极管检波器。在图3中利用Q3的be极单向导电特性作为检波二极管用,C5、C6是中频滤波电容,W1是检波负载,兼音量控制电位器,检波后的音频信号由电位器的滑动臂经隔直电容C7送至低频放大器。收音机在接收强弱不同的电台信号的时候,音量往往相差很大。电台信号过强,甚至引起失真。装上自动增益控制后,就能避免出现这些现象。自动增益控制电路由R3、C4组成。检波后,音频信号的一部分,通过R3送回到第一中放管Q2的基极。由于C4的滤波作用,滤去了音频信号中的交流成分,保留了直流成分。实际上送回到Q2基极的是音频信号中的直流成分。当检波输出的音频信号增大的时候,Q3的IC3增大,Q3的集电极电位就降低,通过R3,就会使Q2的基极电位降低,Q2的集电极电流减小,Q2的放大倍数就会下降,从而保持检波输出的音频信号大小基本不变,这样就达到了自动增益控制的目的。四、功率放大电路本实验套件的收音机功放电路见图4所示:Q4是推动级,它的集电极电流较大,能输出一定的音频功率,推动末级功率放大工作。输入变压器L5起阻抗匹配和倒相的作用,它输出大小相等、相位相反的信号推动三极管Q5、Q6做乙类推挽功率放大。Q5、Q6串联成无输出变压器(OTL)推挽功率放大电路。R7、R8、R9、R10是偏置电阻,使Q5、Q6在没信号输入时,也有一定的集电极电流,用来消除交越失真。由L5次级提供的倒相信号使Q5和Q6交替导通,在Q6的集电极上输出放大了的完整的信号,通过隔直电容C9耦合到扬声器上。五、超外差式六管收音机整机电路分析磁性天线感应来的信号送到谐振回路Lab、Ca中去(参见图2线路标注),将Lab、Ca调谐在接收的信号频率上,其它干扰信号相应地被抑制。然后通过Lcd的耦合将高频信号送到变频级Q1的基极。变频级的振荡电压通过C2注入Q1的发射极。Lb、Cb组成振荡回路,反馈是由Lc来实现的,因此,这是一个振荡电压由发射极注入,信号由基极注入的变频级。R1、R2是偏置元件,C1作高频旁路之用。经变频之后,信号变换成465千赫的中频信号,由谐振于465千赫的中频变压器L3取出送至由Q2组成的第一中频放大级。第一中放级加有自动增益控制,由R3、C4组成,C4是一个容量较大的电解电容器,其主要作用是滤除检波后的音频电流。经过Q2放大后的中频信号由L4取出后送到第二中频放大级。R4、R3、W1是第二中放级的偏置电阻,C5、C6是旁路电容。经过二级中放后的信号由Q3的be极单向导电特性进行检波。在电位器W1上的音频信号通过C7耦合到Q4组成的前置低放级。检波后的直流分量通过R3加到中频放大器Q2的基极作自动增益控制。Q4放大后的音频信号,经L5送到由Q5、Q6组成的推挽功率放大级,最后输出较大的音频功率推动扬声器发出声音。R5是Q4的偏置电阻;R7、R8、R9、R10是Q5和Q6推挽放大级的偏置电阻。C10、R6、C11组成电源退耦电路;电容C8用来改善音质;Cat、Cbt为双联可变电容器顶端的微调电容;本机的中频变压器L3、L4的谐振电容与中频变压器做在一起,因此,在印刷电路板中不再设计有谐振回路电容的位置;L5是输入变压器,JK是外接耳机插口。
我是娜弟
原理:就是把从天线接收到的高频信号经检波(解调)还原成音频信号,送到耳机或喇叭变成音波。
从接收天线得到的高频无线电信号一般非常微弱,直接把它送到检波器不太合适。最好在选择电路和检波器之间插入一个高频放大器,把高频信号放大。
即使已经增加高频放大器,检波输出的功率通常也只有几毫瓦,用耳机听还可以,但要用扬声器就嫌太小,因此在检波输出后增加音频放大器来推动扬声器。高放式收音机比直接检波式收音机灵敏度高、功率大,但是选择性还较差,调谐也比较复杂。
把从天线接收到的高频信号放大几百甚至几万倍,一般要有几级的高频放大,每一级电路都有一个谐振回路,当被接收的频率改变时,谐振电路都要重新调整,而且每次调整后的选择性和通带很难保证完全一样,为了克服这些缺点,当前的收音机几乎都采用超外差式电路。
扩展资料:
被选择的高频信号的载波频率,变为较低的固定不变的中频(465KHz),再利用中频放大器放大,满足检波的要求,然后才进行检波。在超外差接收机中,为了产生变频作用,还要有一个外加的正弦信号,这个信号通常叫外差信号,产生外差信号的电路,习惯叫本地振荡。
在收音机本振频率和被接收信号的频率相差一个中频,因此在混频器之前的选择电路,和本振采用统一调谐线,如用同轴的双联电容器(PVC)进行调谐,使之差保持固定的中频数值。
由于中频固定,且频率比高频已调信号低,中放的增益可以做得较大,工作也比较稳定,通频带特性也可做得比较理想,这样可以使检波器获得足够大的信号,从而使整机输出音质较好的音频信号。
天线接收到的高频信号通过输入电路与收音机的本机振荡频率(其频率较外来高频信号高一个固定中频,中国中频标准规定为465KHZ)一起送入变频管内混合变频,在变频级的负载回路(选频)产生一个新频率即通过差频产生的中频。
中频只改变了载波的频率,原来的音频包络线并没有改变,中频信号可以更好地得到放大,中频信号经检波并滤除高频信号。再经低放,功率放大后,推动扬声器发出声音。
参考资料来源:百度百科——收音机
一起去听风
简介[编辑本段]俗称半导体(东北俗称匣)超外差式收音机:指输入信号本机振荡信号产固定频信号程收音机收广播电台高频信号都变换固定频载波频率(仅载波频率发改变其信号包络仍原高频信号包络)再固定频进行放检波再加低放级超外差式收音机种接收机高频放器频放器间须增加级变换器通称变频器根本任务高频信号变换固定频由于频频率(我采用465千赫)较变换前高频信号(广播电台频率)低且频率固定所任何电台信号都能相等放量另外频放量容易做比较高易产自激所超外差式收音机做灵敏度高由于外电台必须经变频变频频率才能通频放路所提高收音机选择性般超外差式收音机组框图图1所示主要构造[编辑本段]、变频级图1看超外差式收音机变频级包括混频器本机振荡器两部接收线收高频调幅信号经调谐输入路选择送入变频级混频器本机振荡器(由变频级本身产等幅高频信号)产高频等幅振荡电流送入混频器通本机振荡频率高于外信号频率且高数值要保持定值即频频率两种信号混频器混频结产新频率信号混频器根本功用输入信号载波频率同本机振荡器载频频率进行差拍其输端差频信号即频信号外差作用我收音机频频率规定465千赫465千赫差频信号仍属高频范围比外信号载波频率低才称频信号外高频调幅信号经变频变载波频率要求原信号调制规律能改变仍调制新频信号所变频级输频信号仍调幅信号图2所示变频电路本实验套件收音机线路变频电路现电路工作程叙述:Lab绕磁性棒线圈Lab、Ca、Cat组高频调谐路Lb、Cb、Cbt、C3组本机振荡路磁性线接收高频调幅信号经高频调谐路选择由耦合线圈Lcd加变频管基极发射极间;本机振荡器产高频等幅信号(比外信号频率高固定频)通C2、C1R2加变频管基极发射极间我知道半导体三极管发射结(发射极基极间P-N结)非线性元件所外信号本机振荡信号加发射极--基极路发混频产我需要差频(465千赫)我再通接集电极路L3组频谐振路(俗称周)放频信号选取由L3级输送至频放器使本机振荡频率调谐路高频谐振频率差始终固定频(465千赫)改变调谐路谐振频率(选择所要收听电台)必须同调整振荡路振荡频率叫统调简化使用调谐手续收音机述两路采用同轴双连变电容(Ca、Cb)进行调整用双连变电容等容式例270PF×2、365PF×2等规格使用等容双连变电容必须本机振荡路变电容Cb并联电容Cbt适选取Cbt便使两路较统调C3垫振电容用补偿波段高低端统调偏差电阻R1、R2组偏置电路L2波振荡线圈L3周二、频放极频放器超外差式收音机极其重要组部放级坏收音机灵敏度、选择性保真度等主要指标决定性影响收音机频放器其工作频率465千赫用谐振路作负载提高收音机灵敏度选择性本实验套件收音机频放器电路图3所示经变频级变换465千赫频信号通频变压器L3耦合至Q2基极经Q2放由第二频变压器L4耦合Q3进行第二频放Q3既第二放放管检波级经Q3放频信号利用Q3be极PN结单向导电特性进行检波R3第放管Q2偏置电路C4任务旁路频信号;R4、R3、W1第二放管Q3偏置电路C5、C6旁路电容音频信号通C7耦合低放级各极频放器间采用频变压器进行耦合由于三极管输阻抗较低考虑阻抗匹配所电源供给频变压器初级接入同级数调谐且圈数少便与级所接三极管输入阻抗特点相适应三、检波自增益控制超外差式收音机通采用二极管检波器图3利用Q3be极单向导电特性作检波二极管用C5、C6频滤波电容W1检波负载兼音量控制电位器检波音频信号由电位器滑臂经隔直电容C7送至低频放器收音机接收强弱同电台信号候,音量往往相差电台信号强甚至引起失真装自增益控制能避免现些现象自增益控制电路由R3、C4组检波音频信号部通R3送第放管Q2基极由于C4滤波作用滤音频信号交流保留直流实际送Q2基极音频信号直流检波输音频信号增候Q3IC3增Q3集电极电位降低通R3使Q2基极电位降低Q2集电极电流减Q2放倍数降保持检波输音频信号基本变达自增益控制目四、功率放电路本实验套件收音机功放电路见图4所示:Q4推级集电极电流较能输定音频功率推末级功率放工作输入变压器L5起阻抗匹配倒相作用输相等、相位相反信号推三极管Q5、Q6做乙类推挽功率放Q5、Q6串联输变压器(OTL)推挽功率放电路R7、R8、R9、R10偏置电阻使Q5、Q6没信号输入定集电极电流用消除交越失真由L5级提供倒相信号使Q5Q6交替导通Q6集电极输放完整信号通隔直电容C9耦合扬声器五、超外差式六管收音机整机电路析磁性线应信号送谐振路Lab、Ca(参见图2线路标注)Lab、Ca调谐接收信号频率其干扰信号相应抑制通Lcd耦合高频信号送变频级Q1基极变频级振荡电压通C2注入Q1发射极Lb、Cb组振荡路反馈由Lc实现振荡电压由发射极注入信号由基极注入变频级R1、R2偏置元件C1作高频旁路用经变频信号变换465千赫频信号由谐振于465千赫频变压器L3取送至由Q2组第频放级第放级加自增益控制由R3、C4组C4容量较电解电容器其主要作用滤除检波音频电流经Q2放频信号由L4取送第二频放级R4、R3、W1第二放级偏置电阻C5、C6旁路电容经二级放信号由Q3be极单向导电特性进行检波电位器W1音频信号通C7耦合Q4组前置低放级检波直流量通R3加频放器Q2基极作自增益控制Q4放音频信号经L5送由Q5、Q6组推挽功率放级输较音频功率推扬声器发声音R5Q4偏置电阻;R7、R8、R9、R10Q5Q6推挽放级偏置电阻C10、R6、C11组电源退耦电路;电容C8用改善音质;Cat、Cbt双联变电容器顶端微调电容;本机频变压器L3、L4谐振电容与频变压器做起印刷电路板再设计谐振路电容位置;L5输入变压器JK外接耳机插口
引 言在现代工业中,生产过程的机械化、自动化已成为突出的主题。随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,
随着计算机的应用与推广,计算机技术已经渗透到社会的各个领域,与此同时,计算机的安全问题也显得越来越突出。据国外统计,计算机病毒以10种/周的速度递增,另据我国公
智能化多路串行数据采集/传输模块的设计广州市光机电工程研究中心 行联合 广州市方统生物科技有限公司 关 强引言 随着电子技术的不断发展,目前对各种物理量的检测和
en ha sjkla da
收音机是用“电磁感应”原理接收电磁波信号。通过一个金属体或线圈(也就是天线)将感应到的电磁波转换为电信号,再通过电路的处理和变换,最终转为声音。\x0d\x0a