墨墨姐姐
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读!
图像分割技术研究
摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。本文介绍了基于阈值的分割方法和图像分割的图像分割性能的评价、应用现状;最后总结出图像分割的发展趋势。
关键词:图像分割、阈值、边缘检测、区域分割
中图分类号: TN957.52 文献标识码: A
1引言
随着图像分割技术研究的深入,其应用日趋广泛。凡属需要对图像目标进行提取、测量的工作都离不开图像分割。图像分割是图像处理、模式识别和人工智能等多个领域中一个十分重要且又十分困难的问题,是计算机视觉技术中首要的、重要的关键步骤。图像分割结果的好坏直接影响对计算机视觉中的图像理解。现有的方法多是为特定应用设计的,有很大的针对性和局限性,到目前为止还不存在一个通用的方法,也不存在一个判断分割是否成功的客观标准。因此,对图像分割的研究目前还缺乏一个统一的理论体系,使得图像分割的研究仍然是一个极富有挑战性的课题。
2图像分割方法
图像分割(Image Segmentation),简单地说就是将一幅数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等。而任何相邻区域之间其性质具有明显的区别。
2.1基于灰度特征的阈值分割方法
阈值分割技术是经典的、流行的图象分割方法之一,它是用一个或几个阈值将图像的灰度级分为几个部分,认为属于同一个部分的像素是同一个物体。
这类方法主要包括以下几种:
(1)单阈值法,用一个全局阈值区分背景和目标。当一幅图像的直方图具有明显的双峰时,选择两峰之间的谷底作为阈值。
(2)双阈值法,用两个阈值区分背景和目标。通过设置两个阈值,以防单阈值设置阈值过高或过低,把目标像素误归为背景像素,或把背景像素误归为目标像素。
(3)多阈值法,当存在照明不均,突发噪声等因素或背景灰度变化较大时,整幅图像不存在合适的单一阈值,单一阈值不能兼顾图像不同区域的具体情况,这时可将图像分块处理,对每一块设一个阈值。
2.2 边缘检测分割法
基于边缘检测技术可以按照处理的顺序分为并行边缘检测和串行边缘检测两大类。常见的边缘检测方法有:差分法、模板匹配法及统计方法等。由于边缘灰度变化规律一般体现为阶梯状或者脉冲状。边缘与差分值的关系可以归纳为两种情况,其一是边缘发生在差分最大值或者最小值处;其二是边缘发生在过零处。
2.3基于区域的分割方法
基于区域的分割方法利用的是图像的空间性质。该方法认为分割出来的某一区域具有相似的性质。常用的方法有区域生长法和区域分裂合并法。该类方法对含有复杂场景或自然景物等先验知识不足的图像进行分割,效果较好。
区域生长方法是把一幅图像分成许多小区域开始的,这些初始的小区域可能是小的邻域甚至是单个像素,在每个区域中,通过计算能反映一个物体内像素一致性的特征,作为区域合并的判断标准。区域合并的第一步是赋给每个区域一组参数,即特征。接下来对相邻区域的所有边界进行考查,如果给定边界两侧的特征值差异明显,那么这个边界很强,反之则弱。强边界允许继续存在,而弱边界被消除,相邻区域被合并。没有可以消除的弱边界时,区域合并过程结束,图像分割也就完成。
2.4结合特定工具的图像分割技术
20世纪80年代末以来,随着一些特殊理论的出现及其成熟,如数学形态学、分形理论、模糊数学、小波分析、模式识别、遗传算法等,大量学者致力于将新的概念、新的方法用于图像分割,有效地改善了分割效果。产生了不少新的分割算法。下面对这些算法做一些简单的概括。
2.4.1基于数学形态学的分割算法
分水岭算法是一种经典的借鉴了数学形态理论的分割方法。该方法中,将一幅图像比为一个具有不同高度值的地形,高灰度值处被认为是山脊,底灰度值处被认为是山谷,将一滴水从任一点流下,它会朝地势底的地方流动,最终聚于某一局部最底点,最后所有的水滴会分聚在不同的吸引盆地,由此,相应的图像就被分割成若干部分。分水岭算法具有运算简单、性能优良,能够较好提取运动对象轮廓、准确得到运动物体边缘的优点。但分割时需要梯度信息,对噪声较敏感。
2.4.2基于模糊数学的分割算法
目前,模糊技术在图像分割中应用的一个显著特点就是它能和现有的许多图像分割方法相结合,形成一系列的集成模糊分割技术,例如模糊聚类、模糊阈值、模糊边缘检测技术等。
这类方法主要有广义模糊算子与模糊阈值法两种分割算法。
(1)广义模糊算子在广义模糊集合的范围内对图像处理,使真正的边缘处于较低灰度级,但还有一些不是边缘的像素点的灰度也在较低灰度级中,虽然算法的计算简明,且边缘细腻,但得到的边缘图会出现断线问题。
(2)模糊阈值法引入灰度图像的模糊数学描述,通过计算图像的模糊熵来选取图像的分割阈值,后用阈值法处理图像得到边界。
2.4.3基于遗传算法的分割方法
此算法是受生物进化论思想提出的一种优化问题的解决方法,它使用参数编码集而不是参数本身,通过模拟进化,以适者生存的策略搜索函数的解空间,它是在点群中而不是在单点进行寻优。遗传算法在求解过程中使用随机转换规则而不是确定性规则来工作,它唯一需要的信息是适应值,通过对群体进行简单的复制、杂交、变异作用完成搜索过程。由于此法能进行能量函数全局最小优化搜索,且可以降低搜索空间维数,降低算法对模板初始位置的敏感,计算时间也大为减少。其缺点是容易收敛于局部最优。
2.4.4基于神经网络分割算法
人工神经网络具有自组织、自学习、自适应的性能和非常强的非线性映射能力,适合解决背景知识不清楚、推理规则不明确和比较复杂的分类问题,因而也适合解决比较复杂的图像分割问题。原则上讲,大部分分割方法都可用 ANN(attificial neural network)实现。ANN 用于分割的研究起步较晚,只有多层前馈NN,多层误差反传(BP)NN,自组织NN,Hopfield NN以及满足约束的NN(CSNN-Const raint Satisfaction Neurat Network)等得到了应用。使用一个多层前向神经网络用于图象分割,输入层神经元的数目取决于输入特征数,而输出层神经元的数目等同于分类的数目。
2.5图像分割中的其他方法
前面介绍了4大类图像分割较常用的方法,有关图像分割方法和文献很多,新方法不断产生,这些方法有的只对特定的情形有效,有的综合了几种方法,放在一起统称为第5类。
(1)标号法(labeling)是一种基于统计学的方法,这种方法将图像欲分割成的几个区域各以一个不同的标号来表示,用一定的方式对图像中的每一个像素赋以标号,标号相同的像素就合并成该标号所代表的区域。
(2)基于Snak模型的分割方法,基于Snake模型的分割是通过对能量函数的动态优化来逼近图像目标的真实轮廓的
(3)纹理分割,由于新的数学工具的引入,纹理分割技术取得了一些进展,张蓬等人将小波分析应用于纹理基元提取。
(4)基于知识的图像分割方法,直接建立在先验知识的基础上,使分割更符合实际图像的特点。该方法的难度在于知识的正确合理的表示与利用。
3图像分割性能的评价
图像分割评价主要有两个方面的内容:一是研究各分割算法在不同情况下的表现,掌握如何选择和控制其参数设置,以适应不同需要。二是分析多个分割算法在分割同一图像时的性能,比较优劣,以便在实际应用中选取合适的算法。分割评价方法分为分析法和实验法两大类。分析法是直接分析分割算法本身的原理及性能,而实验法是通过对测试图像的分割结果来评价算法的。两种方法各有优劣,由于缺乏可靠理论依据,并非所有分割算法都能够通过分析法分析其性能。每种评价方法都是出于某种考虑而提出来的,不同的评价方法只能反映分割算法性能的某一性能。另一方面,每一种分割算法的性能是由多种因素决定的,因此,有可能需要多种准则来综合评价。
4图像分割技术的发展趋势
随着神经网络、遗传算法、统计学理论、小波理论以及分形理论等在图像分割中的广泛应用,图像分割技术呈现出以下的发展趋势:(1)多种特征的融合。(2)多种分割方法的结合。(3)新理论与新方法。
参考文献
[1] [美]RC冈萨雷斯.数字图像处理(第二版)[M].阮秋琦,等译.北京:电子工业出版社,2003
[2] 章毓晋.图像分割[M].北京:科学出版社,2001.
[3] 李弼程,彭天强,彭波等.智能图像处理技术[M].北京:电子工业出版社,2004.
[4] 杨晖,曲秀杰.图像分割方法综述[J].电脑开发与应用。2005,18(3):21-23.
点击下页还有更多>>>图像分割技术论文
微微的辣
随着影像医学的快速发展,影像检查已成为医疗工作中的重要环节,临床医疗对影像检查的依赖性越来越强。下面是我为大家整理的医学影像技术 毕业 论文,供大家参考。
《 医学影像学的现状和未来初探 》
摘要:医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗 方法 选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。
关键词:医学影像学;现状;未来;综述
【中图分类号】R473【文献标识码】A【 文章 编号】1672-3783(2012)04-0140-01
随着医学影像学飞速发展,它在临床医学中的地位不断提高,由X线、超声、放射性核素显像、CT、数字减影血管造成影及介入装置、磁共振成像所组成的医学影像学家族已经成为临床主要的诊断和鉴别诊断方法、医院现在化的重要标志、科学研究的主要手段及医院重要的经济收入来源。现将医学影像学的发展与展望综述如下。
1 医学影像学技术发展的历史回顾
1895年11月8日德国物理学家伦琴发现了一种新型射线(a kind of new rays)。并于11月22日为夫人拍摄了一张手部x线照片,也是人类第一张x线影像。随后,x线被广泛的应用于对疾病的诊断和治疗,形成了放射诊断学和放射治疗学。x线还用于疾病的预防、康复和预后随访。在医学之外,还用于x线衍射分析和工业探伤等多种用途。因此,x线的发现对人类作了重大贡献。1971年亨氏菲尔德发明了CT,将传统的X线的直接成像转变为间接成像,从而奠定了现在影像学的基础,随后出现的MRI、正电子发射型体层摄影术等影像学技术,以及近期出现的分子成像和光成像,使医学影像学在显示形态学状态之外,还能完成组织器官功能检查,并最终在分子和细胞水平显示组织、器官的化学成分和代谢变化。
2 医学影像学现状
曾经在我国长期使用用的x线透视检查的应用逐年减少, 大型医院或者发达地区的中小医院已逐步取消透视, 而代之 以x线摄影检查, 且以DR检查占主导地位。传统 X线造影检查被多排螺旋CT和磁共振成像所取代 首先是 X线脊髓造影检查被 MRI所取代;其次是多排螺旋CT和MRI结合光学内镜逐步取代 X线消化道造影、经静脉肾盂造影和胆道造影等检查;然后是 DSA的诊断性血管造影检查逐步被CT血管成像和MR血管成像所取代。 伴随设备的逐步普及,CT已经成为临床(尤其急诊)最重要的影像检查方法。MRI具有无创伤、 无射线辐射危 害,成像参数多、获得的信息量大,软组织对比度最佳等显著优点,是最活跃的影像学研究手段,已经成为很多重要疾病的确证诊断方法。超声以其设备普及、价格低廉、无创伤、无射线辐射危害、可在病床旁边实施和便于复查等优点, 成为目前临床应用最主要的影像学筛选检查技术。以早年的CT为起点,CT、MRI等设备开始提供横断层面影像。同时,得益于计算机技术的进步,今天已经可以在较短时间内把上述的信息“重组”(reformation)为三维的、分别显示兴趣结构的、带有仿真色彩的,甚至以内窥镜的信息模式显示的“直观信息”。举例说,一个重度创伤的病人可能会有骨折、颅脑损伤、内脏损伤、血管损伤及其他并发症。今天,只需用CT从头到脚在数十秒钟内完成采集,病人即可回病房作急症处理,而放射科医师可使用一次采集的信息分别显示出骨骼、颅脑、内脏、血管等结构与病变,并给急症医师提供“直观的”兴趣结构的三维的、彩色仿真的诊断信息。这样的信息已经超越了大体解剖学的可视能力,达到了即使在手术刀或解剖刀下都不可能完全洞察的水平。
3 医学影像学技术的发展趋势
各种医学影像学设备向小 型化、专门化、高分辨力和超快速化方向发展,MRI和CT的全器官灌注成像得到临床普及应用。虽然目前MSCT主要生产厂家的设计理念和主攻方向不一致,导致彼此设备的差异巨大,但是可以预测,在不远的将来,CT机的构造(包括发生器、X线球管的结构和数量、探测器种类和排数等) 将发生实质性变改, 也许球管和探测器的旋转速度更快,使MSCT的时间分辨力突破50 ms大关,使心脏得到真正的“冻结”,而探测器材质的改进能显著提高MSCT的空间分辨力。 各种介入治疗成为常规有效的治疗方法。集诊断与治疗一体化的医学影像学设备也在不断成熟和普及, 使疾病的诊断更加及时、 准确,治疗效果更佳。应用计算机仿真技术设计外科手术方案、 由影像导航 系统直接引导外科手术入路、确定手术切除范围,并在术中直接应用MRI对病灶切除范围进行现场评价会逐渐普及应用。在影像学网络化的基础上,医学图像处理将成为常规,而服务器软件取代工作站,实现多点同时后处理,并使图像后处理的自动化程度进一步提高。 伴随远程影像学的普及和宽频带网络的应用,医学影像学图像的远程传输更为快捷,图像更加清楚,影像学科医生可以在家里或者在出差旅途中完成诊断 报告 。
分子成像是医学影像学的 热点 研究方向之一,伴随分子成像的研究进展,会有多种组织、器官特异性对比剂问世,这些新型对比剂能显示特定基因表达、 特定代谢过程、特殊生理功能,其毒副作用更小、对比增强效果更佳、诊断的特异性更强,真正实现疾病早期诊断。开发疗效监测对比剂(或称分子探针),以在最短时间得到治疗的反馈信息, 在分子水平上进行疾病的靶向治疗。除PET外, 其他医学影像学技术也能直接用于药物的研发和监测疗效,在活体早期、连续观察药物或基因治疗 的机制和效果,以利于药物筛选和新药开发。此外,分子成像方法和图像后处理技术将得到持续改进,并开发出用于分子成像的影像学新技术。 医学影像学技术的进展还将导致影像学科内部人员构成发生变化,物理师、数学家、生物医学工程师、计算机专家和循证医学专家占影像科室人员的比例越来越高,针对某种重大疾病可以组建包含内、外科和影像学医生的新型科室。医学影像学检查不仅在诊断与治疗的环节发挥作用,而且可以在疾病预防、健康体检、重大疾病筛查、健康管理、早期诊断、病情严重程度评估、治疗方法选择、疗效评价、康复等环节发挥越来越大的作用,医学影像学科的地位必将不断提高。参考文献
[1] 贺延莉,王亚蓉,殷茜,等.T-PACS在医学影像学实践教学中的应用和优势[J].中国医学 教育 技术,2011,25(6):657-659
[2] 刘卫宾,韩冬.浅析普通X射线摄影及其应用[J].中国卫生产业,2011,8(11):115-115
[3] 蒋震,沈钧康,宦坚,等.医学影像学研究生读书报告的方法学探讨[J].中华医学教育探索杂志,2011,10(10):1179-1181
[4] 高艳,李坤成,杜祥颖,等.医学影像学教学中比较影像学的重要性[J].中国高等医学教育,2011(11):79-80
[5] 王安明,史跃,赵汉青,等.格式塔理论在医学影像学诊断中的作用[J].医学与哲学.临床决策论坛版,2011,32(10):67-68
[6] 江传海,余梁,胡正宇.PACS在医学影像学教学中的应用[J].安徽医学,2011,32(10):1778-1779
《 数字图象在医学影像中的应用 》
【摘要】医学影象技术从70年代进入数字时代,二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。在客观上促使各种成像技术凭借自身的优势竞相发展。取长补短,综合利用,使疾病的早期诊断率有明显提高。
【关键词】数字图象;医学影像;应用
Digital image in medicine image application
Rao Tianquan
【Abstract】medicine phantom technology enters the Digital Age from the 70's,20 for many years successively have had MR,B ultra,digitized image equipment and so on DR,DSA,ECT,R put into the use. Diagnosed the very big advancement function to the medicine image. In on is objective urges each kind of imagery technology to rely on own superiority unexpectedly to develop. Makes up for one's deficiency by learning from others' strong points,the comprehensive utilization,enable the disease the early diagnosis rate to have the distinct enhancement.
【key word】digital image; Medicine image; Using
图象是周围客观世界的一种印象,数字图象是60年代出现的一种全新的,科技含量极高的产物。它的出现使传统的模拟图象受到了极大的挑战。数字图象和模拟图象相比,二者的区别在于:一:模拟图象是以一种直观的物理量的方法来连续地表现我们期望得知的另一种物理场的特征。而且数字图象则完全以一种规则的数字量的集合来表达我们面对的物理图象。二:用模拟图象的方法来显示图象具有直观,方便的特点,一旦设计出一种图象的处理方法则具有全场性与实时处理等优点。但是模拟图象亦有抗干扰性差,重复精度差,处理功能有限,处理灵活性差的缺点。而数字图象具有很好的抗干扰性,图象处理方便,适应性能强等优点,特别是随着计算机技术的发展,数字图象处理的速度也变得越来越快,越来越显示它的发展潜力和优势。三:数字图象和模拟图象相比,它的图象更清晰、无失真,更便于储存和传输。
从70年代末期开始,医学影像技术进入了数字时代。二十多年来先后有了MR、B超、DR、DSA、ECT、CR等数字化影像设备投入使用。对医学影像诊断起了很大的推进作用。这一些进展无一不是从根本上破除了原有信息载体形式和成像原理的束缚,开创新径而取得的。同时这也在客观上促使各种成像技术凭借自身的优势竞相发展。它们之间不仅没有相互代替,而是取长补短,综合利用,使疾病的早期诊断率有明显提高。
1 数字X线图象的形成
X线透射成像是基于人体内不同结构的脏器对X线吸收的差异。一束能量均匀的X线照射到人体不同部位时,由于各部位对X线吸收的不同,透过人体各部位的X线的强度亦不同,这些穿透过人体的剩余X线就携带着人体被照射部分的组织密度和厚度的信息。这些信息投影到一个检测平面上,即形成一幅人体的X线透射图象。如果这个检测平面是荧光屏,那么我们就得到一幅模拟的图象了。再将这幅图象用不同的方法采集下来(如摄影,录像,拍照等方法)。检测器也可以是 其它 ,如电离室、光电管、晶体压电等等。然后将收集到的信号进行模数转换就形成了一组由不同数字代表X线强弱排列的数字信号了。最后将该组信号交计算机处理经数模转换即成为清晰、无干扰、无变形、无失真的数字X线图象。
2 数字图象技术在X线检查中的运用
2.1 X线电视系统:主要由影像增强器和X线闭路电视系统组成,影像增强器把X线像转换成可见光像,而且图象的亮度得到很大的增强,然后通过电视系统进行观察和分析图象,它是实现X线图象数字化的基础。
2.2 数字摄影:(DR)对影像增强器所得到的电视信号,用摄像机拾取的高信噪比的电视信号进行数字化,然后再进行各种计算机处理,得到不同效果的图象,这种技术多用于胃肠透视和血管造影成像。该种检查拍摄后立即可以得到图象。不必等待冲洗,还可以动态的观察。
2.3 计算机摄影:(CR)它是用影像板(IP)代替胶片暴光,然后将存储在IP板上的X线潜影用激光扫描拾取并转换成电信号,再经计算机处理得到一幅X线数字图象,最终用激光像机把X线图象记录在胶片上。这种方法灵敏度高、敏感范围大、图象清晰。
2.4 数字减影:(DSA)用于血管造影,原理是将检查部位于造影前后用摄像机各采集图象,然后将图象数字化后存储在计算机里,用计算机进行处理,将两次采集的图象进行对应像素逐个相减,减影后的图象只留下充盈的血管图象,这样去掉了组织的重叠干扰,可以清楚地观察血管情况。
2.5 计算机横断体层装置:(CT)X线对人体横断面的各个方向进行照射,检测器采集到体层各个面对X线的吸收曲线后,用计算机处理所得数据最后以数字矩阵的形式表示横断面上个点的密度值,这样断面上的各点的密度都用确定的数值表示出来,这种对组织密度的量化,可以从数值上来区分健康组织和病变组织,大大提高了诊断的科学性。
此外;数字图象还应用于MIR、ECT、B超等医学影象学科,在我们的日常生活中都离不开数字图象。
参考文献
[1] 王容泉. 《医用大型X线机系统》
[2] 梁振声. 《医用X先机结构与维修》
[3] 邹 仲.《X线检查技术学》
[4] 吴恩惠.《头部CT诊断学》
有关医学影像技术毕业论文推荐:
1. 医学影像毕业论文范文
2. 有关医学影像类毕业论文
3. 医学影像本科毕业论文
4. 医学影像学研究论文
5. 关于医学影像的论文
摘 要 针对基于PC实现的图像边缘检测普遍存在的执行速度慢、不能满足实时应用需求等缺点,本文借助于TI公司的TMS320DM642图像处理芯片作为数字图像处
中国知网也好!万方数据也好都有例子!甚至百度文库都有!==================论文写作方法===========================论文
图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。我整理了图像分割技术论文,欢迎阅读! 图像分割技术研究 摘要:图像分割是图像处理与计
医学影像分割论文可以在nature上发表。nature上目前也有很多影像相关的文章,医学影响分割的论文可以在上面发表。
通过遥感变化信息检测方法对两时相遥感影像进行处理分析后,得到 “变化信息”影像,同时为了便于后续震害信息的识别,需要把这些变化信息从复杂的环境背景中提取出来,得