• 回答数

    3

  • 浏览数

    285

瞪样的胖子
首页 > 学术期刊 > 行列式计算方法总结论文答辩

3个回答 默认排序
  • 默认排序
  • 按时间排序

Lisa要去旅行

已采纳

行列式公式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或|A|。

行列公式无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。行列式可以看作是有向面积或体积的概念在一般的欧几里得空间中的推广。

行列式计算的技巧性很强。理论上,任何一个行列式都可以按照定义进行计算,但是直接按照定义计算而不借助于计算机有时是不可能的。

行列式是研究某些数的“有规”乘积的代数和的性质及基计篡方法。它起源于解线性方程。后逐步地应用到数学的其它领域。行列式的计算通常要根据行列式的具体特点,采用相应的计算方法。

行列式的计算方法:

1、对角线法则:对角线法则是行列式计算方法中最为简单的一种,记忆起来很方便,但它只适用于二阶和三阶行列式,四阶及以上的行列式就不能采用此方法。

2、定义法:如果所求的行列式中含的非零元素特别少,可以直接利用行列式的定义求解,或者行列式的阶数比较低。如果对于一些行列式的零元素(若有)分布比较有规律。

219 评论

小妮子--Amy

计算行列式的方法总结如下:

方法一:化上三角行列式

这是求行列式的最基础的方法,一般就是一列(行)乘上一个数加到某一列(行),使其转化为上(下)三角形行列式。

方法二:连加法

特征:当你发现行列式每一行(列)的值加起来都相等且不等于0时,试试把他们其余行(列)全部加到第一行(列)去,然后再把这个和提出来,从而第一行(列)就全是1了,从而简化行列式。

方法三:滚动消去法

特征:当你发现,相邻的行(列)长得比较相似,很多项长得一样时。不妨试试滚动相减。即:最后一行(列)开始的每一行(列)都减去上一行(列)。

方法四:逐行(列)相加减法

该方法是将第一行(列)加(减)到第二行,获得的新的第二行再拿去加(减)第三行。

特征:发现前(后)一行(列)中的元素如果去掉“某个元素”后,再和下一行(列)相加减,就能把下一行(列)的某些元素消去,而不带来新的元素。并且前一行(列)中的那个想要去掉的 “某个元素” 能用同样的方法事先先消掉。

278 评论

电冰箱5

第一、行列式的计算利用的是行列式的性质,而行列式的本质是一个数字,所以行列式的变化都是建立在已有性质的基础上的等量变化,改变的是行列式的“外观”。

第二、行列式的计算的一个基本思路就是通过行列式的性质把一个普通的行列式变化成为一个我们可以口算的行列式(比如,上三角,下三角,对角型,反对角,两行成比例等)。

第三、行列式的计算最重要的两个性质:

1、对换行列式中两行(列)位置,行列式反号。

2、把行列式的某一行(列)的倍数加到另一行(列),行列式不变。

行列式的性质

1、行列式A中某行(或列)用同一数k乘,其结果等于kA。

2、行列式A等于其转置行列式AT(AT的第i行为A的第i列)。

3、若n阶行列式|αij|中某行(或列);行列式则|αij|是两个行列式的和,这两个行列式的第i行(或列),一个是b1,b2,…,bn;另一个是с1,с2,…,сn;其余各行(或列)上的元与|αij|的完全一样。

4、行列式A中两行(或列)互换,其结果等于-A。 ⑤把行列式A的某行(或列)中各元同乘一数后加到另一行(或列)中各对应元上,结果仍然是A。

157 评论

相关问答

  • 论文答辩数据计算方法怎么写

    基本套路 1、解题,也就是做什么 2、为什么,也就是在梳理国内外研究现状的基础上,阐明自己研究的意义。这里可以提出前人研究存在的三个问题,或本课题的三个难题,立

    cherryhu111 4人参与回答 2023-12-05
  • 论文答辩总结总结

    问题一:毕业答辩ppt总结怎么写 强调分析、责任心、检查与管理的重要。 没有范文。 以下供参考, 主要写一下主要的工作内容,如何努力工作,取得的成

    小懒虫菲菲 2人参与回答 2023-12-12
  • n阶行列式计算方法研究论文

    使用代数余子式来计算,选取矩阵的一行,分别用该行的各个元素乘以相应的代数余子式,再求之和即可。代数余子式是出去该元素所在行、列的元素后剩下的元素组成的矩阵的行列

    狼人发生地 5人参与回答 2023-12-08
  • 行列式的计算论文答辩提纲

    一、答辩陈述: 在答辩的陈述中,我从四个方面介绍了我的论文: 1、文章中需要用到的有关二次型、正定二次型等概念; 2、正定二次型的性质及判定方法; 3、半正定二

    kami麻麻 3人参与回答 2023-12-07
  • 行列式的计算方法论文开题报告

    重新复习下线性代数课本,不懂问人

    魅影幽兰 3人参与回答 2023-12-07