土耳其电信
关于我国城镇居民储蓄存款模型的计量经济分析 (我的姓名等信息就省略了啊 呵呵) 内容摘要:本文利用我国1978年以来的统计数字建立了可以通过各种检验的城镇居民储蓄率的模型,对我国城镇居民储蓄存款情况进行实证分析。通过对该模型的经济含义分析得出各种主要因素对我国城镇居民储蓄存款数量的影响程度,并针对我国城镇居民存款储蓄现状提出自己的一些建议。 关键词:居民储蓄存款 实证分析 主要因素 一、问题的提出 1978年以来,随着我国国民经济的飞速发展,我国的居民储蓄也出现高速增长的态势。进入90年代以后.我国居民储蓄存款余额始终保持在两位数的增长速度。我国居民储蓄存款持续增长这一经济现象引起国内理论界的广泛关注。这对我国经济的进一步增长有着有利的一面,但也会带来一定程度的负面影响。所以国家相继出台了一系列积极的财政和货币政策,以刺激国内消费和投资需求,分流储蓄,但是居民储蓄依然持续增加。由于居民的储蓄存款直接影响着居民的消费行为,影响着货币的供给量,进而间接影响着国家经济的发展,宏观调控的力度和效果,因此,对我国居民存款储蓄问题的深入研究就显得尤为重要,这有助于帮助大家认清现状,做出合理的决策。虽然我们作为本科阶段的学生对这个问题的理解和研究还不够深入和透彻,但对此问题的探索有利于我们更好的掌握专业知识,了解国情,提高实际操作水平和理论联系实际、发现问题、分析问题、解决问题的能力。 二、文献综述 我国有很多学者建立了许多的储蓄模型来分析各因素对居民储蓄的影响程度,但分析结论的差异很大。整理以前的研究成果,一个社会的储蓄总量受很多因数的影响,根据经典西方宏观经济学理论,储蓄水平主要受收入因数、利息率、物价水平、收入分配等因数的影响: 1.收入因数 收入是决定储蓄的重要因数,收入的变化会直接决定着储蓄的变化。在其他条件不变的情况下,储蓄与可支配收入之间存在着正方向的变化关系,即居民的可支配收入增加,储蓄量增加;个人可支配收入减少,储蓄量减少。可支配收入是指居民户在支付个人所得税之后,余下的全部实际现金收入。 2.利息率 传统经济学认为,在收入即定的条件下,较高的利息率会使储蓄增加。在本文中,我们选用的利息率是根据当年变动月份加权平均后的一年期储蓄存款加权利率。 3.物价水平 物价水平会导致居民户的消费倾向的改变,从而也就会改变居民户的储蓄倾向。本文用通货膨胀率来考察物价水平对储蓄率的影响。 4.收入分配 凯恩斯认为,收入分配的均等化程度越高,社会的平均消费倾向就会越高,社会的储蓄倾向就会越低。在国际上,衡量收入分配平均状况最常用的指数是基尼系数。 三、变量的选取及分析 目前我国正处于改革时期,各种不确定性因素很多。因而,要分析各种因素对中国居民储蓄行为的影响,必须立足于中国的国情。1998年后,中国经济运行进入了一种新的体制约束状态,出现了明显的供给过剩,需求对经济增长的约束与拉动作用明显增强,投资、消费膨胀的内在动力明显不足;同时,由于我国市场机制尚不健全,市场经济发育不成熟,市场体制的控制力还有限,从而不能形成一种有效地传导机制。市场化的改革对人们的经济行为、心理行为带来了很大影响,银行开始考虑贷款风险,投资者开始考虑投资回报,而消费者也开始考虑最佳的消费时机和预期收入。这说明,我们的微观经济层面已生长出一种内在的约束机制,然而社会各个方面对这些积极的因素还很不适应,微观主体内在约束机制较强与宏观经济市场传导机制不畅之间的矛盾,导致了投资行为受阻、消费行为审慎和储蓄持续稳定增长。当前影响我国居民储蓄的因素有很多,概括起来有以下几点:居民对社会经济形势的预期、可选择的投资渠道、信贷消费的发展、利率因素的影响、"假性"存款的影响、消费领域的信用等级、高收入阶层消费状况、就业形势压力、体制改革、居民收入水平等。 由于我现在的时间和能力有限,只能综合考虑,选取一部分变量进行研究,而且为了方便查找数据,只建立我国城镇居民储蓄存款模型进行研究。本文选用当年的收入增长率来考察收入因数对储蓄率的影响。用城镇居民的储蓄率作为被解释变量。另外还选取了中国1979年到2002年的各年的城镇居民收入的基尼系数、一年期储蓄利率和通货膨胀率作为解释变量。 四、数据及处理 本文模型数据样本为从1979-2002年。 年份 城镇居民储蓄率 城镇居民收入增长率 一年期储蓄利率 通货膨胀率 城镇居民基尼系数 1979 0.06368087 0.264869934 3.78 0.02 0.16 1980 0.08740586 0.220385089 5.04 0.059804 0.15 1981 0.07093626 0.104176446 5.4 0.024052 0.15 1982 0.08105586 0.139165412 5.67 0.01897 0.15 1983 0.09963501 0.093723563 5.76 0.015071 0.16 1984 0.13025584 0.245357008 5.76 0.027948 0.19 1985 0.15161502 0.184241122 6.72 0.08836 0.19 1986 0.17454542 0.280700971 7.2 0.060109 0.2 1987 0.2175453 0.167515864 7.2 0.072901 0.23 1988 0.17862152 0.219728929 7.68 0.185312 0.23 1989 0.2721202 0.199827095 11.12 0.177765 0.23 1990 0.32760614 0.123579703 9.92 0.021141 0.24 1991 0.31032443 0.163667824 7.92 0.028888 0.25 1992 0.3016907 0.228819425 7.56 0.053814 0.27 1993 0.3199061 0.311233327 9.26 0.131883 0.3 1994 0.42486435 0.397210898 10.98 0.216948 0.28 1995 0.44898036 0.261076104 10.98 0.147969 0.28 1996 0.40903477 0.198208003 9.21 0.060938 0.29 1997 0.30935015 0.127739779 7.17 0.007941 0.3 1998 0.25777978 0.108852141 5.02 -0.026 0.295 1999 0.21234608 0.134557035 2.89 -0.02993 0.3 2000 0.1239205 0.125688358 2.25 -0.01501 0.32 2001 0.24155306 0.14364071 2.25 -0.0079 0.33 2002 0.29897822 0.173106495 2.03 -0.01308 0.319 数据来源:各年份的《中国统计年鉴》 注:Y代表城镇居民储蓄率 X1代表城镇居民收入增长率 X2代表一年期储蓄利率 X3代表通货膨胀率 X4代表城镇居民基尼系数 五、模型及处理 基于以上数据,建立的模型是: Y=β1+β2X1+β3X2+β4X3+β5X4+u β1度量了截距项,它表示在没有收入的时候人们也要花钱消费,储蓄率为负。 β2度量了当城镇个人可支配收入率变动1%时,储蓄增长率的变动。 β3度量了当利率变动一个单位,其实也就是1%时,储蓄的增量的变动。 β4度量了当通货膨胀率变动一个单位,储蓄增量的变动。 β5度量了基尼系数对储蓄率的影响。这也是本文的重点变量。 u是随机误差项。 对Y做回归 利用eviews最小二乘估计结果如下 Variable Coefficient Std. Error t-Statistic Prob. C -0.264646 0.045525 -5.813154 0.0000 X1 0.317426 0.175678 1.806864 0.0875 X2 0.024054 0.003688 6.523093 0.0000 X3 0.024476 0.205508 0.119099 0.9065 X4 1.127523 0.149318 7.551127 0.0000 R-squared 0.897971 Mean dependent var 0.234065 Adjusted R-squared 0.875298 S.D. dependent var 0.116109 S.E. of regression 0.041002 Akaike info criterion -3.360748 Sum squared resid 0.030260 Schwarz criterion -3.113901 Log likelihood 43.64860 F-statistic 39.60525 Durbin-Watson stat 1.541473 Prob(F-statistic) 0.000000 根据以上结果,初步得出的模型为 Y=-0.264646+0.317426X1+0.024054X2 +0.024476X3+1.127523X4. 1.经济意义的检验 该模型可以通过初步的经济意义的检验,系数的符号符合经济理论。 2.统计检验 从表中可以看出,显然通货膨胀率的系数通不过T检验,R2=0.897971, 2值为0.875298,模型的拟合情况较好。F检验的值为39.60525,整个模型对储蓄率的增长影响是显著的。 3.多重共线性的检验 从F值可知此模型整体显著,但是分析各个变量后发现X1和X3不显著,可能存在多重共线性,运用消除多重共线性的逐步回归方法我们可以得到要放弃X3 这个变量,重新做回归分析得到: Y=β1+β2X1+β3X2+β5X4+u Variable Coefficient Std. Error t-Statistic Prob. C -0.271487 0.041322 -6.570056 0.0000 X1 0.314787 0.113799 2.766177 0.0119 X2 0.024487 0.003178 7.704986 0.0000 X4 1.145280 0.137886 8.305987 0.0000 R-squared 0.897094 Mean dependent var 0.229740 Adjusted R-squared 0.881658 S.D. dependent var 0.115517 S.E. of regression 0.039739 Akaike info criterion -3.461967 Sum squared resid 0.031583 Schwarz criterion -3.265624 Log likelihood 45.54360 F-statistic 58.11739 Durbin-Watson stat 1.556309 Prob(F-statistic) 0.000000 从新模型的整体效果来看,R值和F值都很好,而且各个变量的t统计量也表明各个变量对储蓄率的增长都有显著影响。 因此模型可设为Y= -0.271487+0.314787X1+0.024487X2+1.145280X4 4.异方差性检验 对新模型进行异方差性的检验,运用white检验,得到如下结果: White Heteroskedasticity Test: F-statistic 2.669433 Probability 0.054505 Obs*R-squared 11.50596 Probability 0.073942 Obs*R-squared的计算结果是11.50596,,由于选用的没有交叉乘积项的方式,所以自由度为7,在0.05的显著水平下,查表得 (7)=12.59〉11.50596,所以接受原假设,即该模型不存在异方差性。 5.自相关性的检验 从上表可知DW值为1.556309,且样本容量n=24,有三个解释变量的条件下,给定显著性水平 =0.01,查D-W表得,d =0.882,d =1.407,这时有d
超级吃货两枚
谈学好计量经济学的关键问题
论文关键词:计量学;模型;假定;参数枯计;
论文摘要: 计量经济学是一门涉及面广、计算复杂的较难学的课程。从学这门课应具备的知识条件入手。分析了学好的关键问题是:要把握线性回归模型的几个基本假定,要学会建模,要懂得几种参数估计的方法,还要明白模型检验的意义。
计量经济学是经济学领域内的一门应用性学科。它是以知识、方法为基础,以一定的经济理论为,以为手段,通过建立计量经济模型,考察和研究经济中各种经济变量之间的数量关系,预测经济发展的趋势,检验经济政策效果的一门非常具有实用价值的学科。现在很多专业都开设这门课。但由于这门课涉及的知识面广、计算公式多而复杂,要求的应用手段高,所以,学生在学的过程中感到比较困难,且学的效果也不太理想。本人根据自己的教学体会,谈谈学好这门课应注意的几个关键问题。
首先.学生学这门课程必须具备以下条件:统计学、数学和经济学知识以及计算机技术。且缺一不可。
(一)对统计学而言,为了测定经济变量之间的数量关系,计量经济研究过程中采用了统计学的分析方法,如:计量经济学模型的统计检验、参数估计的方法以及建立模型所需要的统计数据资料的搜集等都离不开统计方法。特别是统计数据的搜集、整理和分析。因此,统计学就成为计量经济学研究的基础。统计资料的准确性、时效性和系统性就成为计量经济学模型建立的好坏、参数估计代表性大小的影响因素。
(二)对经济学而言,经济学是计量经济学的理论基础,因为计量经济学研究的主题是经济现象发展变化的规律,计量经济模型描述的是经济变量之间的数量关系,这就决定了计量经济研究必须以经济理论和经济运行机制作为建立模型的理论基础。如消费函数和函数的建立,就是以不同的消费理论和投资理论为前提的。此外,计量经济研究的结论反过来可以验证有关经济理论的正确与否。
(三)对数学而言,为了将经济理论和客观事实有机的结合起来,需要采用适当的方法。由于计量经济学研究的主要是多个因素之间静态或动态的随机关系,所以需要引人数理统计以及微积分与矩阵等理论方法,这些方法成为计量经济研究的建模工具。如利用最小二乘法估计模型中的参数就利用到微积分中的极值原理,在多元线性回归模型中要用矩阵理论推导参数的性质,在搜集资料时要用抽样理论等。现在经济学研究的数学化和定量化是经济学科学化的标志。这种科学化推动了经济学领域的发展,如微分学与边际理论,优化方法与最优配置理论,所以,数学是计量经济分析的一个基本工具,用数学方法去思考和描述经济问题和政策,这是计量经济学的关键。
(四)对计算机技术而言,社会发展到今天,计算机已普遍运用到定量分析中,定量分析是依据数理统计理论的发展而发展起来的。它包括系统论、信息论和控制论,其多数方法复杂,计算工作量大,这就需要利用计算机软件来解决问题。
所以,要想学好计量经济学,学生就必须要有厚实的统计学基础,扎实的数学功底和熟练的技术。否则,分析问题时将会很困难,甚至分析不下去,即使分析出来,结论和实际也会有很大偏差或者根本和实际经济运行规律相违。
其次,学生学这门课必须注意把握线性回归模型的几个基本假定。
(一)几个基本假定是运用最小二乘法的前提条件。对于线性回归模型,模型估计的任务是用回归分析的方法估计模型的参数,常用的方法是普通最小二乘法,简称ors法,为保证参数估计量具有良好的性质,就需对模型提出几个假定。如果实际模型满足这些假定,ors法就是一种适用的方法,如果实际模型不满足这些假定,ors法就不再适用,这就需要发展其它方法来估计模型。因此它是运用ors法的前提。
几个基本假定是:1、假定解释变量xi是确定性变量,不是随机变量,且之间互不相关。( 是第i个解释变量);2、零均值假定,即,其中为随机误差项;3、同方差假定,即,其中为方差;4、无自相关假定,即C OV ;5、解释变量与随机误差项之间互不相关假定,即;6、随机误差相服从均值为0,方差为的正态分布假定,即 。
(二)几个基本假定是贯穿计量学的一条主线。计量经济学研究的一个主要任务是对模型进行计量经济,目的是检验计量经济学的性质。一般是检验模型中随机误差项是否存在异方差和序列相关的问题、解释变量是否存在多重共线性问题以及解释变量是否是随机变量,这些问题都是根据这几个基本假定而来的,即如果违背了同方差假定,模型就存在异方差,即;如果违背解释变量之间互不相关假定,模型就存在多重共线性问题,即0;如果违背随机误差项在不同样本点之间互不相关假定,模型就存在自相关问题,即0;如果违背解释变量是确定性变量的假定,那么模型就存在解释变量是随机变量的问题。每一个问题都有它产生的原因,会造成不同的后果,因此,就有不同的模型检验、处理和估计的方法,所以学生要特别注意把握这几个基本假定。
第三.学生学这门课要了解为什么要建模.以及如何建模?
模型就是表达研究系统内经济变量之间关系的一个或一组方程式。它是根据经济行为理论和样本数据显示出的变量间的关系建立的。如生产函数模型,在实际生活中,经济系统各部门之间、经济过程各环节之间、经济活动中各因素之间除了存在经济行为理论上的'相互联系之外,还存在数量上的相互依存关系,这些关系可通过模型来表达。通过模型可进行结构分析、经济预测、政策评价和检验与发展经济理论。模型研究的是当一个或几个变量发生变化时,会对其它变量以至整个经济系统发生影响。如果人们不通过建模,而过分依赖直觉,即凭经验和学识去判断变量之间的关系,则会很危险,因为可能会忽略或者错误地使用某些重要的关系。另外,凭直觉判断变量之间的关系充其量只能算作定性分析,它只能分析出变量发展的趋势,而不能分析出当一个或几个变量每变动一个单位时会引起另一个变量变动几个单位,也就是说,它不能进行定量分析,不能证实变量变化的度以及进行检验和计量经济学检验。再有,经济预测时,要提供预测的精度,凭直觉的方法通常会阻碍预测结果置信度的数学度量。所以,只有通过建模,才能比较准确地反映经济现象中各经济变量之间的关系。
那么如何才能科学合理的建模?建模是一门很难掌握的,因为它主要依赖建模过程中的直觉判断,而这些判断又没有清楚的准测。一般建模的方式有四种:一是根据经济行为理论,运用数理经济学的研究方法,判断变量间的关系,推导出模型的具体数学形式;二是根据实际统计资料绘制被解释变量与解释变量之间的相关图,由相关图现实的变量之间的关系确定模型的数学形式。如果相关图中的点大致呈一条直线,那么就建立直线回归模型,如果大致呈一条指数曲线,就建立指数曲线回归模型;三是如果数列是时间数列,可根据时间数列的特点确定模型。例如,若时间数列中各项数据的K次差大致为一常数,一般说可考虑配合K次曲线模型,若时间数列中各项数据的对数一次差大体为一常数,可考虑配合指数曲线模型;四是在某些情况下,如果无法事先确定模型的数学形式,那么就可采用各种可能的形式进行段模拟,然后选择其中较好的一种。这几种方式都是对理论模型的初步设定,在模型的估计和检验过程中还需逐步调整,以得到一个函数形式较为合理的模型。一个合理的模型应包括三点:(1)要符合经济现象的行为理论;(2)模型的建立方法和参数的估计方法要科学;(3)数据要真实可靠。
第四.学生学这门课必须掌握几个主要知识点。
这门课主要学单方程计量学模型、扩展的单方程计量经济学模型、联立的计量经济学模型以及模型的应用,其中又以单方程计量经济学模型为基础。不管什么样的模型,都要涉及到模型的建立、参数的估计以及模型的,这些其实就是这门课的主要知识点。模型的建立前己述过,这里主要谈谈参数估计的方法和模型的检验方法。
(一)参数估计的方法。模型建立以后,要想在实际中对经济现象进行估计和预测就必须估计模型的参数。参数是模型中表示变量之间数量关系的系数,说明解释变量对被解释变量的影响程度,它是未知的,需要估计。因此参数估计方法是计量经济学的核心内容,可根据不同的原理构造不同类型的估计方法。主要方法有:
1、普通最小二乘法(OIS法),是应用最多的一种方法。因为用这种方法估计的参数具有线性性、无偏性和最小方差性,即参数具有优良的性质。这种方法是从最小二乘原理出发的其它估计方法的基础,如加权最小二乘法、折扣最小二乘法、间接最小二乘法、二阶段最小二乘法。它的理论前提是各实际观察值与理论估计值离差平方和最小。
2、最大或然法(ML法),也称最大似然法。这种方法是从最大或然原理出发发展起来的一种估计参数的方法。虽然其应用没有最小二乘法普遍.但在计量经济学中占据很重要的地位。其原理是当从模型总体中随机抽取n组样本观测值之后,最合理的参数估计量应该使得从模型中抽取该n组样本观测值的联合概率最大。这个联合概率又称为变量的或然函数,通过对或然函数极大化以求得总体参数的估计量。
3、高斯—牛顿迭代法。对于有些不能转化为线性方程的非线性方程模型,估计参数时用高斯—牛顿迭代法就是一种适用的方法。它的基本思想是用泰勒级数展开式去近似地代替非线性回归模型,然后通过多次迭代去多次修正回归系数,使回归系数不断逼近非线性回归模型的最佳系数,最后使原模型的残差平方和达到最小。它的程序是:(1)选择初始值;(2)把泰勒级数展开;(3)估计修正因子;(4)检验精确度;(5)重复迭代。
(二)模型检验的类型。参数估计出之后,模型便已确定。但模型是否符合实际,能否解释实际经济运行过程,是否最大限度地拟合了样本数据,还需要进行检验,检验类型包括:
1、经济意义检验,主要检验各个参数值的符号以及数值的大小、数值之间的关系在经济意义上是否合理。例如,需求函数中,需求量一般与收人正相关,与价格负相关。所以,收人与价格的参数估计值分别应取正值和负值,如果结果相反,就应调整模型。又如,食品支出的恩格尔函数: 其中: 表示人均月食品支出水平,表示人均月收人水平,那么的取值区间应在。到1之间,因为食品的增长幅度一般低于收人的增长幅度,如超出这个范围,则不能通过经济意义的检验。
2、检验,是利用数理统计中的推断方法,对估计结果的可靠性进行检验。一般包括拟合优度检验法、模型的显著性检验法(F检验法)和解释变量检验法(T检验法)等。统计检验是对所有现象进行回归分析时都必须通过的检验。
3、计量经济检验,主要用于检验模型的计量经济学性质。如回归模型的前提条件(基本假定)的检验、模型的识别性检验等。
模型如果通过上述检验,则表明所估计的计量经济模型较好地反映了经济变量之间的数量关系,可以进一步用于定量分析。若有些检验未通过,则表明:或者模型设定有错,或者搜集的统计资料不能真实地反映客观实际情况。这就需要重新设定理论模型或重新搜集统计数据。
TTTTTTTT醬
(河南大学经济学院,河南开封 .a%ee.)摘 要:计量经济学课程的重要性已逐渐为人们所认识,并已经被国家教育部确认为经济学门类各专业的核心课程,其必将对我国经济学人才培养质量产生重要影响但反思计量经济学课程的教学还有许多问题需要改进因此,从计量经济学课程教学理念改革的角度进行了若干思考关键词:本科;计量经济学课;教学理念中图分类号:uaPli 文献标志码:2 文章编号:MGURIeM(INni)imPnsiP计量经济学作为一门课程,在我国一部分高等院校经济学科管理学科相关专业中开设已经有二十年的历史,它的重要性也逐渐为人们所认识克莱因()说:计量经济学已经在经济学科中居于最重要的地位,在大多数大学和学院中,计量经济学的讲授已经成为经济学课程表中最有权威的一部分 萨缪尔森()认为:第二次大战后的经济学是计量经济学的时代 n88o 年 s 月,教育部高等学校经济学学科教学指导委员会讨论并确定了高等学校经济学门类各专业的八门共同核心课程,其中包括计量经济学这是我国经济学学科教育走向现代化和科学化的重要标志,必将对我国经济学人才的培养质量产生重要影响特别是计算机技术的迅速发展和计量软件开发,为计量经济学的应用提供了广阔的空间应该说,经过多年的努力,在计量经济学课程建设上我们已经取得了不小的成绩在充分肯定这门课程作用的基础上,认真总结多年的教学实践,我们也感到对于本科计量经济学的教学理念还需要进一步商榷目前,我们研究问题的分析方法已经实现了由过去的定性分析到定量分析的转变,特别是计量经济的研究方法已经成为经济学及相关领域的主流方法,这是值得充分肯定的这也是我们本科计量教学工作者的一大贡献,它彻底扭转了单纯的定性分析理念然而,令人不安的是在本科计量经济学的教学中出现了两种倾向:其一是把计量经济学当成了圣经,唯计量是从,似乎是没有计量参加的学科都是伪科学或者说不够科学,其结果是计量方法的滥用;其二是计量的数学化,也就是数学的计量而不是经济学的计量,其结果是使得计量经济学脱离实际,变成了数学游戏就上述问题,结合本科计量经济学教学实际谈谈我们的看法一计量经济学不是圣经:完美中有折中首先,计量模型是完美的我们以一元模型为例: 5n7i n其中, 表示除 以外的所有影响 的因素,模型(n)叫总体回归模型该模型描述的变量之间的关系是相关关系,而非函数关系对同样问题处理的数理模型: 5P7i n模型(n)比模型(P)完美,因为模型(n)比模型(P)考虑问题全面在模型(n)中,每给 一个值,从理论上讲,由于 的存在,模型考虑了和 对应的所有 的值;模型(P)仅考虑了因素 对 的唯一影响,而没有考虑 以外的其他因素对的影响,因此,模型(P)仅考虑了和对应的一个 值,这里对应加引号是因为从理论上讲,那个 值仅仅是无穷多个 值中的一个,而未必就是真的和 对应的那个,这就是计量经济学家和数理经济学家的不同之处,所以,我们说计量经济学是完美的(确切的说是计量模型比数理模型完美)但是,完美的计量模型(总体回归模型)理论上是存在的,实践中是求解不出来的,不是因为我们的计算技术达不到而求解不出来 ,,而是由于总体的无限性和 的复杂性(随机变量),i n特别是在现实经济问题中,我们面临的问题的总体一般是不知的(总体数据搜集的困难)因此,计量经济学家就退而求其次优结果总体回归直线:() 5S7i n总体回归直线(S)就是我们常说的函数形式或方程,它是由(D)两边取数学期望而得到(假定()E),它揭示了,每给 一个值,有唯一的一个 的期望值与之对应这里的分析思路:从模型(D)到模型(()就由相关关系转化为函数关系,从而计量模型的完美性在这里受到了挑战,这就是我们说的计量模型的第一次打折那么总体回归直线(()是否可以顺利的求解呢?在总体数据已知的条件下可以找到在现实经济问题中,我们面临的问题的总体一般是不知的,因此求解总体回归函数的思路也是行不通的既然是这样,那就退而求其次优结果0再次打折7,计量经济学家自然就想到借助样本来分析问题,建立样本回归模型: ())E D这里, , 是总体回归(D)中 , 的近似估计,残差E D E D也是随机干扰项 的近似估计那么样本回归模型())可以容易求解吗?尽管样本的数据可以很容易的收集,但是由于残差同样存在和随即干扰项的一样困难,使得样本回归模型仅仅是理论上的存在,现实中很难操做计量经济学家又再次退而求其次优结果,寻找样本回归直线(第三次打折): 0M7E D这里,方程(M)是由())两边取数学期望得到的参数的估计应用了普通最小二乘法单就上述分析过程我们不难发现,计量模型是完美的,而模型估计是打折的不完美二计量模型与模型估计一样吗?计量模型指的是总体回归模型,模型估计是样本回归函数(回归直线)因此,用计量模型方法分析问题的实质是归结为模型估计,所以,这种方法也是折中(打折)的研究问题那么这种方法可靠吗?当上述研究的问题(计量模型)满足基本的假定条件才是可靠的:(D)正态性假设:随机误差项服从正态分布等价于被解释变量(因变量)在自变量的各水平上服从正态分布;(P)独立性假设,无自相关性假设;(()同方差性假设;())随机误差项与解释变量不相关;(M)零均值假设这些假定条件在现实经济问题中是很难满足的,而且模型估计是直接对样本负责,而只有样本满足简单随机抽样,才能够较好地描述总体状态特征我们知道,真正的简单随机抽样也是不容易做到的因此,我们主张使用计量分析方法也要谨慎,它不是随便就可以使用的,尽管专业的计量分析软件大大简化了计量的运算三本科计量经济学课教学理念:理论与应用并重目前,与过多介绍理论的传统教学方式相比,随着多媒体技术的应用,计量经济学的教学生动了很多,老师也会列举一些例子对所讲授的内容进行说明,但是多数仅限于此,并没有对计量经济学的建模步骤原理以及模型的局限性等进行深入分析,更谈不上与学生的互动而且计量经济学方法已经被广泛地用于分析中国现实经济问题,但是实际教学中仍然缺乏包含经典案例的教材同时,由于授课学时的限制使得目前的计量经济教学中缺少生动的案例分析我们既要重视理论方法,也要重视应用模型和应用中实际问题的解决因此,在课程内容和教学大纲的安排上要强调理论案例和实验多元化的教学手段,理论教学实验教学和案例教学应成为当前计量经济学教学缺一不可的内容尤其是实验教学和案例教学,在教学过程中起着激发学生主观能动性创新能力的作用,授课教师应根据学生专业0如金融财政国际贸易7的不同,安排相应的案例和实验内容,使学生能够很好地将经济理论和计量经济学的实证分析方法结合起来,提高学生对实际经济问题的分析和判断能力实验教学是计量经济学教学中不可或缺的一部分,对于培养学生的动手能力是至关重要的因此,在计量经济学的实验教学中要注意两方面的问题:第一,实验教学要与理论教学相衔接,即应该将实验教学合理恰当地穿插在理论教学的过程中,而不能截然分离开这样有助于加深学生对理论知识的理解和应用第二,教师应该精心选择实验内容,编好实验计划,做好示范在编写实验计划时不仅要加强基础内容的学习训练,而且要构建能有效将实践技能训练与科学研究能力相结合的实验体系,进而形成基础实验综合实验研究创新型实验多层次多模块相互衔接实验教学第三,结合实际情况,要特别强调学生在处理数据0如:频率转换季节调整7建立模型等方面容易出现的问题总之,为了实现本科计量经济学课教学理念的改革,突出基本思想方法和应用的教学,最关键的还是加强计量经济学师资队伍的建设,大力培养既懂经济又熟悉数学和计量方法的教师队伍,使我们的计量经济学教师的知识结构合理,如在本科阶段学数学研究生读经济博士读数量经济等参考文献:D 洪永淼6计量经济学的地位作用和局限6经济研究,PEEY,(M)6P 范钦珊6以内容方法技术为重点深化课程教学改革6中国高等教育,PEE),(D)6( 胡荣才,王亚雄6本科计量经济学教学中几个问题的思考6统计教育,PEEX,())6) 胡新艳,陈文艺6 教学模式在计量经济学教学中的应用6高等农业教育,PEEX,())6M 李子奈,潘文卿6计量经济学0第二版76北京:高等教育出版社,PEEM6张晓峒6计量经济学基础(第三版)6天津:南开大学出版社,PEE)6X责任编辑柯黎
计量经济学在我国的推广与应用,对我国经济学的定量化研究做出了重要贡献,也在中国经济学界受到了越来越多的关注。下面是我为大家推荐的计量经济学论文,供大家参考。 计
爱莫能助,我也是在寻求别人帮助的,呵呵,希望我们都有个好结果
中文核心期刊中文核心期刊是中华人民共和国期刊中学术水平较高的刊物,是我国学术评价体系的一个重要组成部分.它主要体现在学术水平的确认方面.如在相当一批教学科研单位
对我国经济增长的因素分析 关于教育对中国经济增长作用的计量分析 关于司机年龄与发生车祸次数关系的分析 改革开放以来商品零售价格指数(RPI)变化因素分析 固定资
计量经济学是用定量 方法 研究经济活动规律的一门科学,在经济学科中居于最重要的地位。下面是我为大家推荐的计量经济学论文,供大家参考。计量经济学论文 范文