little1208
1 引 言刚性微分方程存在于航空、航天、热核反应、自动控制、电子网络及化学动力学等许多重要科学技术领域及实际问题中[1,2],由于方程的解中既包含有衰减十分迅速的分量,又包含有相对来说变化缓慢的分量,两者的差别可以有好几个数量级,在选定计算方法时带来很大实质困难。实际研究证明,由于数值解稳定性限制,求解刚性微分方程主要采用隐式方法,如:隐式RK方法,BDF方法,IRK方法等。而采用隐式方法将刚性方程离散化以后,其变为线性或非线性方程(组)的求解问题。目前,对线性或非线性方程(组)的求解,多采用Newton-Raphson迭代求解。但对于某些非线性方程组,由于方程之间的非线性化程度相差较大,采用Newton-Raphson迭代方法数值求解的结果并不理想。本文利用Brown算法求解此类非线性刚性系统,具有较高精度和较快迭代速度的优点,数值试验结果表明了该方法的有效性。2 Brown算法考虑多个实变量的非线性方程组(2.1)的数值求解问题,非线性方程组可以用向量形式表示:,其中,。形如:的公式称为Newton-Raphson迭代公式。由于该方法是将,同时线性化,所以它并未考虑充分利用的具体结构。如果一个非线性的向量函数,其线性精度在各个分量,上的分布可能是不平衡的,有的分量是非线性函数,而有的分量是线性函数,同时非线性函数组中也有非线性程度高低的差别,在此情况下,利用Newton-Raphson迭代方法对所有分量采用完全相同的数值处理,不利于方法整体计算效率的提高。针对以上情况,Brown于1969年提出了按分量函数方程,来形成迭代过程[3],其基本思想是对各分量逐个线性化并用其中每一个线性方程消去余下非线性方程中的一个变量,最后整个方程组就简化为一个仅含单个变量的非线性方程,应用一次单步Newton-Raphson迭代并结合逐一回代,即完成一次迭代过程[4]期刊网。Brown算法的迭代步骤如下:第一步,设为方程组(2.1)解的第次近似,函数在处近似用线性函数替代,令,由此求出: 定义上式右端为。第二步,对函数定义一个新函数Brown算法,且记,其中。类似地,用线性函数来近似替代。令,解出,此时,为个变量的线性函数,并记此线性函数为。第步,由线性函数,可得,利用Newton-Raphson迭代,求得,并由出发,利用逐一回代,即 (2.2)从而可求出,至此完成了一次Brown迭代过程。3 数值试验考虑以下常微分方程组初值问题:问题1 其中:;。问题2其中:;。对于上述两问题,当时,可计算其右函数组的Jacobi矩阵的特征值,均有,其余特征值绝对值均不超过6,因此系统呈强刚性。此外,观察两问题中的右函数组,可以看出除最后一个函数是高度非线性化外,其余函数都是线性的。对于上述两问题,采用隐式Euler方法离散方程组,并分别用Newton-Raphson迭代法与Brown迭代法求解,取步长,及相对误差界(表示迭代次数)控制每步迭代,最后得到数值解的最大绝对误差界,方程真解为:问题1,,,;问题2,,,。计算结果对比分析如表1所示。表1 数值计算结果问题1 问题2Newton-Raphson迭代次数 迭代18次收敛 不收敛,Brown迭代次数 迭代7次收敛 迭代8次收敛数值解的绝对误差(Newton-Raphson迭代) 3.83e+001 溢出数值解的绝对误差(Brown迭代) 1.44e-002 3.82e-0024、结束语 对于实际问题中的刚性系统离散化后,如果非线性方程组的线性化程度不同,Brown迭代求解比Newton-Raphson迭代法具有较大的优势,另外需要指出的是在实际运算中,方程应预先进行排列,将线性方程放置在最前,再次为非线性化程度由低到高排列,可以有效的提高运算效率。
123456789小姐
还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法
当放大器输入一个正弦信号时,由于放大器本身的非线性以及静态工作点选择不适当就会使输出变为一个非正弦信号,产生了非线性失真。使正负半周不对称。引入负反馈以后可减小
金融学的历史在经济学中令人咤舌的短。经济学家们早就意识到信用市场的基本经济功能,但他们并未热衷到在此基础之上做进一步的分析研究。正因为如此,关于金融市场的早期观
线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重
抽样的基本方法1、简单随机抽样法(抽签、利用随机数字表);2、分层随机抽样法;3、等距随机抽样法;4、整群随机取样法;5、多段随机抽样法;6、其他取样方法(如:
在“Nonlinear Analysis”,“Applied Mathematics Letters”, “Bulletin of the Australia