• 回答数

    3

  • 浏览数

    222

吃要吃好的
首页 > 学术期刊 > 氮循环研究现状论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

nixiaoyanzz

已采纳

第一作者:Chi Chung Lee

通讯作者:Yilin Hu,Markus W. Ribbe

通讯单位:加州大学欧文分校

论文DOI:

全文速览

钼固氮酶在常规环境下催化还原 N2 到 NH3 发生在 M 团簇处。该团簇是一种复杂的辅助因子,包含两个由间隙碳化物连接的金属硫部分立方烷和三个带硫。最近的一项晶体学研究表明,N2 的结合是通过 M 簇的带硫在转换时的位移来实现的。然而,在催化过程中 N2 结合和带硫移动的直接证据仍然没有发现。该研究工作表明 N2通过电子和硫的消耗被捕获在 M 簇上,并且 N2-捕获状态在生成 NH3 方面具有催化能力。此外,本文证明只有当亚硫酸盐与还原剂一起提供时才会发生产物释放,亚硫酸盐作为硫化物插入到带硫置换的位置,并且在催化过程中存在带硫的动态进出。总之,这些结果确立了辅因子带硫的移动作为固氮酶反应的关键。

背景介绍

固氮酶是一种复杂的金属酶,与农学、环境和能源等领域有着密切的关系。作为全球氮循环中的一个关键步骤,固氮酶在催化大气 N2 转化为生物可利用 NH3 方面的作用广为人知,固氮酶还可以在模拟环境反应中将 CO 和 CO2 还原为碳氢化合物(例如,CH4、C2H6、C3H8),用于生产碳燃料。除了 N2和 CO,固氮酶还能够还原多种替代底物,包括 C2H2, CN , N3 和 H+,进一步说明了这种重要金属酶的催化多功能性。传统钼 (Mo) 固氮酶的催化是通过一个双组分系统完成的,该系统利用还原酶组分将电子传递给催化组分以进行底物还原。还原酶成分,称为铁 (Fe) 蛋白,是一种同源二聚体,包含一个亚基桥接 [Fe4S4]簇和每个亚基内的 ATP 结合位点;被称为催化成分的钼铁(MoFe) 蛋白是一种α2β2-异四聚体,其在每个 α/β-亚基界面含有一个 P-簇([Fe8S7]),以及在每个 α-亚基内含有一个 M-簇 (或 FeMoco; [( R -homocitrate)MoFe7S9C)。在底物转换过程中,钼固氮酶的两种成分蛋白相互形成功能复合物,使 ATP 依赖的电子从 Fe 蛋白的 [Fe4S4] 簇通过 P 簇转移到 M 簇。MoFe 蛋白,一旦积累了足够数量的电子,就会发生底物还原。

固氮酶的功能重要性和与生俱来的复杂性,激发了几代研究人员对这种酶促 N2 还原机制进行研究;Lowe-Thorneley 模型是迄今为止最知名的动力学描述,用于解释质子的蛋白内传递和电子到 M 簇以进行底物结合、活化和还原。另一方面,由于这些结合物种的瞬态特性,研究人员已证明固氮酶的底物或中间结合状态表征极具挑战性。在这方面的研究中,冷冻淬火光谱技术与钼固氮酶活性位点基因修饰相结合,已被用于表征这种酶的某些状态,这些状态可能与催化相关。然而,获得 Mo-固氮酶配体结合状态分子描述的一个非常重要步骤来自于 MoFe 蛋白的 CO 结合形式的高分辨率晶体结构,它揭示了 μ2-CO 配体桥接在 M 簇的 Fe2 和 Fe6 之间,代替了带状硫 (S2B)。这一结果令人兴奋,因为它指出了一种机制,涉及通过取代辅助因子的带硫产生活性 Fe 物质。更有趣的是,在 S2B 位点进行的后续晶体脉冲追踪研究表明辅助因子的整个带区域可能参与催化。

图文解析

图1. N2 结合的 Av1* 的GC-MS 和频率选择性 NMR 分析。a、b,产生的C2H4 的 GC 洗脱曲线 (a) 和 GC-MS碎裂模式 (b);条件分别为在 D2/C2H2下的 Av1(灰色)、N2/D2/C2H2下的 Av1(蓝色)和 D2/C2H2下的 Av1*(棕色),基于 H2O 的反应。c,在 Av2、MgATP 和连二亚硫酸盐存在下,在 Ar 下转换时,由 Av1(实心蓝色)、14N2 制备的 Av1*(实心红色)和 15N2(实心棕色)制备的 Av1* 生成 NH4+ 的频率选择性 1H NMR 光谱。

图 2. 各种 Av1 蛋白种类的 EPR 和 GC-MS 分析。a-j,垂直模式(a-e) 和平行模式 (f-j) 的 EPR 光谱,用于测试静息态 Av1 (a,f),N2 结合的 Av1* (b,g),连二亚硫酸盐重新激活的 Av1* (TOD) (c,h)、Eu(II)-EGTA/亚硫酸盐再活化 Av1*(TOS) (d,i) 和 Eu(II)-EGTA/亚硒酸盐再活化 Av1*(TOSe) (e,j)。k-o,对 Av1 (k)、Av1*(l)、Av1*(TOD) (m)、Av1*(TOS) (n)和 Av1*(TOSe) (o) 酸淬灭后释放的 15N2 进行 GC-MS 分析。

图 3. 底物转换对亚硫酸盐物种的要求。a,在含有 Av2、MgATP 和Eu(II)-EGTA 的体外活性测定中,在不存在 (-S) 或存在各种硫源(+S2-,+SO42 和 +SO32 )或亚硒酸盐 (+SeO32-) 的情况下,Av1* 的活性。b,在含有 Av2、MgATP 和 Eu(II)-EGTA 的体外测定中,Av1* 的 C2H2 还原活性与亚硫酸盐 (SO32-)或亚硒酸盐 (SeO32-) 浓度的滴定关系。c,使用 2mM SO32-(实心绿色固体)或 NFE(空心圆圈)作为硫源,在 C2H2 还原中,Av1* 活性与时间的关系。

图 4. Av1*(TOS) 的晶体学分析。Av1*(TOS) 的链-A/B (P-团簇(A/B)) (a) 和 链-C/D(P-团簇(C/D)) (b) 界面处的P-团簇结构。原子颜色编码:Fe,橙色;S,黄色;O,红色;N,蓝色。c-f,链-A(M-簇(A))(c,e)和链-C(M-簇(C))(d,f)中,M-团簇的结构。c,d,侧视图;e,f,沿M-团簇(A) (c,e) 和 M-团簇(C)(d,f) 的 Fe1-C-Mo 轴的视图。

图 5. 带状硫与催化相关的移动。a,各种 Av1 蛋白或蛋白链中单个硫或硫基团的相对电子密度。b,c, GC-MS 分析 Av1*(TOS) (b) 及其分离的 M-簇 (c) 中酸不稳定、簇结合的 34S2- 离子的释放。d, ICP-OES 测定从不同样品提取的 M 簇中的 Se/Mo 比。

图 6. Av1*(TOSe) 的XAS/EXAFS 分析。a-g,对 Av1*(TOS) 在过量 SeO32 中转换10min(指定为 Av1*(TOSe),黑色),Av1* (TOSe) 在过量 SO32 中转换 5min(指定为 Av1*(TOSe)5min,蓝色)和 Av1*(TOSe) 在过量 SO32 转换 60min(指定Av1*(TOSe) 60min,红色),获得的Fe (a-d) 和 Se K-edge XAS 分析 (e-g)。

图 7. SO32-的配位和还原。a-c,由 SO32- 或 NH3配位的 M 簇的 DFT 优化模型。d,两种SO32-配位情况下的反应能,假设耦合的 e-/H+ 转移发生在初始配位步骤之后。e,在两种SO32-配位情况下,硫掺入的累积反应能。

总结与展望

基于上述结果,本文结合使用生化、分析、光谱和结构方法来证明 N2 在电子和硫耗尽条件下被捕获在 M 簇上,并且这种 N2 捕获状态与催化相关,能够产生 NH3。此外,研究表明产物释放仅在亚硫酸盐和还原剂存在的情况下发生,亚硫酸盐作为硫化物插入到带硫置换的位置,并且在催化过程中存在带硫的动态流动。这些证据共同指出带硫的移动是固氮酶机制的一个新的关键因素。

183 评论

在路上嘚吧嘚

自然界固氮N2 + O2 =放电= 2NO2NO + O2 = 2NO23NO2 + H2O = 2HNO3 + NO工业生产--氨催化氧化制硝酸N2 + 3H2 =高温高压催化剂= 2NH34NH3 + 5O2 =催化剂加热= 4NO + 6H2O2NO + O2 = 2NO23NO2 + H2O = 2HNO3 + NO用氮肥制硝酸,氮肥包括NH4Cl等铵态氮肥,KNO3等硝态氮肥,一般不会用它们制硝酸。理论上来说,氮气是和氧气、水反应生成硝酸的。首先,在放电条件下,氮气才可以和氧气化合生成一氧化氮:N2+O2=放电=2NO ①然后,一氧化氮与氧气迅速化合,生成二氧化氮:2NO+O2=2NO2 ②最后,二氧化氮与水反应生成硝酸:3NO2+H2O=2HNO3+NO ③说明一下,第②、③步反应如果在氧气充足的情况下可以这么反应:4NO+3O2+2H2O==4HNO3 假如说你要写一个大得化学方程式的话可以这么写2N2+5O2+2H2O=放电=4HNO3 (不过不建议这么总括)

170 评论

郑二头头

氮循环(Nitrogen Cycle)是描述自然界中氮单质和含氮化合物之间相互转换过程的生态系统的物质循环。 氮在自然界中的循环转化过程。是生物圈内基本的物质循环之一。如大气中的氮经微生物等作用而进入土壤,为动植物所利用,最终又在微生物的参与下返回大气中,如此反覆循环,以至无穷。 基本概念 空气中含有大约78%的氮气,占有绝大部分的氮元素。氮是许多生物过程的基本元素;它存在于所有组成蛋白质的氨基酸中,是构成诸如DNA等的核酸的四种基本元素之一。在植物中,大量的氮素被用于制造可进行光合作用供植物生长的叶绿素分子。 加工,或者固定,是将气态的游离态氮转变为可被有机体吸收的化合态氮的必经过程。一部分氮素由闪电所固定,同时绝大部分的氮素被非共生或共生的固氮细菌所固定。这些细菌拥有可促进氮气和氢化和成为氨的固氮酶,生成的氨再被这种细菌通过一系列的转化以形成自身组织的一部分。某一些固氮细菌,例如根瘤菌,寄生在豆科植物(例如豌豆或蚕豆)的根瘤中。这些细菌和植物建立了一种互利共生的关系,为植物生产氨以换取糖类。因此可通过栽种豆科植物使氮素贫瘠的土地变得肥沃。还有一些其它的植物可供建立这种共生关系。 其它植物利用根系从土壤中吸收硝酸根离子或铵离子以获取氮素。动物体内的所有氮素则均由在食物链中进食植物所获得。 氨 氨来源于腐生生物对死亡动植物器官的分解,被用作制造铵离子(NH4+)。在富含氧气的土壤中,这些离子将会首先被亚硝化细菌转化为亚硝酸根离子(NO2-),然后被硝化细菌转化为硝酸根离子(NO3-)。铵的两步转化过程被叫做氨化作用。 铵对于鱼类来说有剧毒,因此必须对废水处理植物排放到水中的铵的浓度进行严密的监控。为避免鱼类死亡的损失,应在排放前对水中的铵进行硝化处理,在陆地上为硝化细菌通风提供氧气进行硝化作用成为一个充满吸引力的解决办法。 铵离子很容易被固定在土壤尤其是腐殖质和粘土中。而硝酸根离子和亚硝酸根离子则因它们自身的负电性而更不容易被固定在正离子的交换点(主要是腐殖质)多于负离子的土壤中。在雨后或灌溉后,流失(可溶性离子譬如硝酸根和亚硝酸根的移动)到地下水的情况经常会发生。地下水中硝酸盐含量的提高关系到饮用水的安全,因为水中过量的硝酸根离子会影响婴幼儿血液中的氧浓度并导致高铁血红蛋白症或蓝婴综合征(Blue-baby Syndrome)。如果地下水流向溪川,富硝酸盐的地下水会导致地面水体的富营养作用,使得蓝藻菌和其它藻类大量繁殖,导致水生生物因缺氧而大量死亡。虽然不像铵一样对鱼类有毒,硝酸盐可通过富营养作用间接影响鱼类的生存。氮素已经导致了一些水体的富营养化问题。从2006年起,在英国和美国使用氮肥将受到更严厉的限制,磷肥的使用也将受到了同样的限制。这些措施被普遍认为是为了治理恢复被富营养化的水体而采取的。 在无氧(低氧)条件下,厌氧细菌的“反硝化作用”将会发生。最终将硝酸中氮的成分还原成氮气归还到大气中去。 氮气(N2)的转化 有三种将游离态的N2(大气中的氮气)转化为化合态氮的方法: 生物固定 – 一些共生细菌(主要与豆科植物共生)和一些非共生细菌能进行固氮作用并以有机氮的形式吸收。 工业固氮 – 在哈伯-博施法中,N2与氢气被化合生成氨(NH3)肥。 化石燃料燃烧 – 主要由交通工具的引擎和热电站以NOx的形式产生。 另外,闪电亦可使N2和O2化合形成NO,是大气化学的一个重要过程,但对陆地和水域的氮含量影响不大。 由于豆科植物(特别是大豆、紫苜蓿和苜蓿)的广泛栽种、使用哈伯-博施法生产化学肥料以及交通工具和热电站释放的含氮污染成分,人类使得每年进入生物利用形态的氮素提高了不止一倍。这所导致的富营养作用已经对湿地生态系统产生了破坏。 全球人工固氮所产生活化氮数量的增加,虽然有助于农产品产量的提高,但也会给全球生态环境带来压力.,使与氮循环有关的温室效应、水体污染和酸雨等生态环境问题进一步加剧. [思路分析] 氮素是构成生物体的另一种必需元素,自然界中的氮素循环包括许多转化作用。空气中的氮气被固氮微生物及植物与微生物的共生体固定成氨态氮,经过硝化微生物的作用转化成硝态氮,后者被植物或微生物同化成有机氮化物。动物食用含氮的植物,又转变成动物体内的蛋白质。动物、植物、微生物的尸体及排泄物被微生物分解后,又以氨的形式释放出来,这种过程叫做氨化作用。由硝化菌产生的硝酸盐在无氧条件下被一些微生物还原成为氮气,重新回到大气中,开始新的氮素循环。微生物在氮素循环中的几种作用归纳为:固氮作用、硝化作用、同化作用、氨化作用和反硝化作用。 [解题过程] 氮素在自然界中有多种存在形式.其中数量最多的是大气中的氮气,总量约3.9×1015t.除了少数原核生物以外,其他所有的生物都不能直接利用氮气,必须通过以生物固氮为主的固氮作用才能被植物吸收利用,动物直接或间接以植物为食获取氮. 构成氮循环的主要环节是:生物体内有机氨的合成,氨化作用,硝化作用,反硝化作用和固氮作用. 植物吸收土壤中的铵盐和硝酸盐,进而将这些无机氮同化成植物体内的蛋白质等有机氮. 动物直接或间接以植物为食物,将植物体内的有机氮同化成动物体内的有机氮.这一过程叫做生物体内有机氮的合成. 动植物的遗体,排泄物的残落物中的有机氮被微生物分解后形成氨,这一过程叫做氨化作用. 氨化作用和硝化作用产生的无机盐,都能被植物吸收利用.在氧气不足的条件下,土壤中的硝酸盐被反硝化细菌等多种微生物还原成亚硝酸盐,并且进一步还原成分子态氮,分子态氮则返回到大气中,这一过程叫做反硝化作用. 大气中的分子态氮被还原成氨,这一过程叫做固氮作用.没有固氮作用,大气中的分子态氮就不能被植物吸收利用. 地球上固氮作用的途径有三种:生物固氮,工业固氮和大气固氮.据科学家估算,每年生物固氮的总量占地球上固氮总量的90%左右,可见,生物固氮在地球的氮循环中具有十分重要的作用. 氮素是农作物从土壤中吸收的一种大量元素,土壤每年因此要失去大量的氮素.大量施用氮素化肥能保证植物的生长需要,使粮食增产,但同时又造成土壤板结和环境污染.所以人们研究生物固氮,通过生物固氮这条途径使土壤中的氮素得到补充,有利于环保和可持续发展.

199 评论

相关问答

  • 反应烧结氮化硅陶瓷研究现状论文

    Si3N4 陶瓷的制备技术在过去几年发展很快,制备工艺主要集中在反应烧结法、热压烧结法和常压烧结法、气压烧结法等类型. 由于制备工艺不同,各类型氮化硅陶瓷具有不

    月球的球球 3人参与回答 2023-12-11
  • 水库氮硫循环研究论文

    浅论水与可持续发展 摘要:水问题关系到人类的生存发展,是可持续发展的关键。他关系到我们每个人的生存、关系到我们子孙后代、关系到我们中华民族是否能傲立于民族之林。

    刺xin的刺刺儿 4人参与回答 2023-12-05
  • 循环经济发展研究论文

    ....................................8000字 估计没人写了

    大筷子93 3人参与回答 2023-12-11
  • 循环球式转向器研究现状论文

    江苏省交通技师学院JIANGSU COMMUNICATION TECHNICIAN COLLEGE毕 业 设 计 (论 文)汽车转向系统检测与维修

    小可爱mmd22 2人参与回答 2023-12-07
  • 循环泵故障诊断研究现状论文

    [摘 要]火电厂辅机设备的状态检修技术开发是电厂状态检修整体技术的重要部分,热工研究院开发采用的离线状态监测+在线系统安全性监测+在线系统经济性监测+综合故障

    芥末花vera 5人参与回答 2023-12-05