• 回答数

    2

  • 浏览数

    115

lucifer487
首页 > 学术期刊 > 有关数学主题化教学的论文

2个回答 默认排序
  • 默认排序
  • 按时间排序

黑马胖子666

已采纳

数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四

91 评论

cindydaniel

《基础教育课程改革指导纲要》把“以学生发展为本”作为新课程的基本理念,提出“改变过于强调接受学习、死记硬背、机械训练的现状,倡导学生主动参与、乐于研究、勤于动手”,“大力推进信息技术在教学过程中普遍应用,逐步实现教学内容的呈现方式、学生的学习方式,以及教学过程中师生互动方式的变革”。也就是说,基础教育课程改革,既要加强学生的基础性学力,又要提高学生的发展性学力和创造性学力,从而培养学生终身学习的愿望和能力。数学实验教学是让学生通过自己动手操作,进行探究、发现、思考、分析、归纳等思维活动,最后获得概念、理解或解决问题的一种教学过程。在这过程中,教师通过提问引导和启发学生学习研究数学问题的方法。在数学实验教学中教师仍然处于主(要引)导的地位,而学生则处于主动学习的地位。有人认为实验仅是自然科学的教学手段,这是一种误解,实验同样在数学教学中有着广阔的应用天地。因为,从广义上说,数学教育也是一种科技活动,是科技工作的一部分。正确地恰到好处地应用数学实验,也是当前素质教育中的一个重要层面。虽然,数学实验一直不被人们所重视,但随着现代教育技术,特别是CAI软件的普及,数学实验必将遍地开花。下面本人就“数学实验”在初中数学教学中谈几点自己的拙见。一、通过数学实验,培养学生的创新思维能力数学理念的抽象性通常都有某种“直观”的想法为背景。作为教师,就应该通过实验,反这种“直观”的背景显现出来,帮助学生抓住其本质,了解它的变形和发展及与其它问题的联系。例如,对于三角形的“内心、外心、重心”的存在性,初中教材中未加证明,学生作图稍有不准确,就难以得出符合要求的结论。教师就可通过实验——抓纸活动,使学生领悟其本质。让每一个学生准备一块三角形纸片,如图,过A作一折叠使AB落在AC上,得折痕AD,则AD平分∠BAC。同样方法得出折痕BE、CF。这样,学生就直观地发现:三角形三个角的一部分线交于一点,这点即为三角形的内心。相似地,可以折出三角形的外心、重心,进一步启发学生,还可折出三角形垂心.又如在“用字母表示数”的教学中,提出下列问题:搭一个正方形需要4根火柴(如下图)1)按上图的方式,搭两个正方形需要 根火柴,搭三个正方形需要 根火柴。(2)搭10个、100个这样的正方形需要多少根火柴?你是怎样得到的?(3)如果用x表示用火柴搭正方形的个数,那么搭x个这样的正方形需要多少根火柴棒?通过学生的操作实践,探究交流,学生从多角度中去思考、去发现规律,发现如下一些结果:1、 … 3x+1 2、 … 4+3(x-1) 3、 … 4x-(x-1) 4、 … x+x+x+1 5、 … 2x+x+1通过折纸与搭火柴棒这些直观形象的实验来阐述抽象的数学内容,这在教材中是很多的,如“三角形内角和定理”、“三角形中位线定理”、“直角三角形斜边中线等于斜边的一半”、“勾股定理”、“特殊直角三角形”及“平行线分线段成比例”等等。通过这些实验操作,一方面使学生能更深入、更扎实地掌握数学知识;另一方面,也使他们在思维方式上不会犯浮夸和刻板的毛病,又能准确抓住事物的本质,提出符合实际的有创新的看法。二、通过数学实验,突破课堂中的教学难点对于教学中的一些疑难点,如不借助于一定的实验手段,就不能调动学生思维的积极性,也很难达到预定的教学目标。例如,在初一数学“质量分数应用题”的教学时,由于学生缺乏自然科学中的有关知识,很难理解这点内容。这时,教师可借助实验的方法来解决这一问题。先让每个学生准备一水杯和二份50g盐。教师在讲清质量分数的概念的基础上开始做实验。教师用量杯给每个学生倒200g水,然后让学生把50g盐加入水中,这样这杯盐水就有250g。那么盐水中盐的质量分数是多少?学生就自然地回答出: = 。让学生尝尝咸味,感受一下。然后再把剩下的50g盐加入盐水杯中,这时盐水的盐的质量分数双是多少?学生也能回答出 。再让学生尝尝咸味,学生发现盐水比原来咸多了(盐的质量分数增大)。又如:新人教版“轴对称”的教学时,由于学生缺乏对称及反折的有关知识,很难理解这点内容。这时,教师可借助多媒体实验来解决这一问题。操作如下:平移 对折 旋转通过实验,学生获得了深刻的感性认识,然后教师通过对实验分析、概括、推理、判断,使学生的认识上升到一种理性的高度:⑴盐的质量分数=盐的质量/盐水的质量⑵对称轴垂直平分连结两个对称点之间的线段。这样处理,远比教师空洞的说教效果要好。三、通过数学实验,激励学生在生活中应用数学通过数学教学,帮助学生树立数学应用意识是素质教育的一项重要任务。这就要求教师必须创设一种实验环境,使学生能受到必要的数学应用的实际训练,否则强调应用意识就成为一句空话。例如,学校每年要举行运动会,运动会场地可组织学生来画。跑道的线宽、道宽的尺寸一般都有规定的标准,当100m、200m、400m、800m等跑步项目终点位置确定时,其起点位置如何确定?相应的每跑道的前伸数怎样确定?标枪、铅球、铁饼场地怎样画?相应的角度怎样确定?这些应用到的数学知识虽简单,但在实际操作中却并不简单。通过教师的指导,使学生领悟到跑道上也 蕴含着丰富的数学知识。又如,在学了一些相关知识后,可让学生根据所学知识设计一些作图工具或测量仪器,如制作丁字尺找圆心、制作勾股计算尺等;或让学生制作一些数学模型,如长方体、正三棱柱(锥)等模型;或让学生设计方案并解决“不过河测河宽”、“测操场上旗杆的高度”等问题。如:在一次数学活动课,老师组织学生到野外测量一个池塘的宽度(即图中A、B间的距离)。例案:在A处测出∠BAE=900 ,并在射线AE上的适当位置取点C,量出AC、BC的长度;运用勾股定理,得AB2=AC2+BC2。请学生给出其他的测量方案(要求画出测量示意图,并简要说明测量方法和计算依据)。 AB这样,通过学生的文体参与,使学生亲自体验到了思维加工的过程,强化了学生“解决问题”的能力,激励学生多把数学知识应用于生活。四、通过数学实验,发现几何问题解决的方法及规律几何证明,学生常常感到无从下手,是几何学习中最困难的地方之一。事实上,几何证明的方法常常也是通过对图形的操作,变形、变换、添加辅助图形等多种多次的尝试而被发现的。发现了证明的方法后,顺便也就证明了前面的“发现(猜想)”的真确性,于是结论也就出来了。下面是一例发现三角形内接矩形的面积变化规律的“数学实验”的做法。①出示图形:在△ABC中,P是BC边上的任意一点,以P为顶点作△ABC的内接矩形,使矩形的一边在BC上。②使点P在BC上运动,矩形面积随之变化。③设BP为x,矩形面积为y,建立x与y间的关系,让学生观察当x变化时,y的变化特点及其是否有最大值。④显示当P点运动时,对应的动点(x,y)的运动轨迹,让学生对第③问中的观察结果进行验证,最后完整显示抛物线。⑤改变△ABC的形状,研究△ABC的底边BC或BC边上的高变化时,对抛物线形状有什么影响。在上述例子中,学生参与实验的过程实际上是在观察实验模拟过程中思考。当然在问题讨论环节中,部分学生仍可发挥创造性,提出自己新的“实验”设想,并上讲台进行实验操作演示或由教师择优实验。 在网络教室环境中,学生在教师实验方案的引导下或在自行设计的实验方案中,自主实验研究的天地更为广阔,机会和时间更多,兴趣更浓,参与程度更高,小组协商学习真正成为可能,因而“研究性学习”教学思想体现得更加充分,“研究性学习能力培养”的教学达成度也会更高。至于证明的书写格式、步骤等,可以在实验报告中列出,也可以实验课外完成,这完全由教师依班级实际而定。五、通过数学实验,培养学生的唯物辩证观数学是一门来源于实践的学科,其本身就充满了唯物论和辩证法。而数学实验为学生认识唯物论和辩证法提供了丰富的感性知识材料,学生每经过一次实验操作,其思维过程必然经历“感知——表象——抽象——反馈——再感知——丰富表象——发展思维——问题解决”这一螺旋上升的阶段。再者,学生“用数学”意识的培养,就是数学理论知识反作用于实践的有力体现。因此,在数学实验中培养学生的唯物辩证观,是完全可行的。此外,数学实验还可培养学生良好的观察能力、浓厚的学习兴趣及严谨的治学态度等。数学实验教学需要在课堂的时间和课堂的空间能够达到数学实验教学的各要素的教学环境下才能进行的,否则实验后就得不到其应有的效果了。 数学实验是一个过程,在这个过程中,学生进行探究和发现的活动,一切结论都应该由学生自己得出。因此,在数学实验中给学生提供答案是不必的甚至是有害的。当然,知识是发现的对象,是实验的基础、方法的载体,我们绝不是不要知识,不要演绎证明。学生在实验情境中的“做”中学,对知识形成过程,对问题发现、解决、引申、变换等过程的实验模拟和探索,可激发学习动机,有助于深刻理解知识,有助于形成证明的基础平台和对逻辑演绎证明的本质把握。而且,这种实验式的教和学拓宽了学生的思维活动空间,使他们的思维更有深刻性和批判性。同时,它不仅仅关心学习者“知道了多少”,更关心学习者“知道了什么”、“怎样知道的”。它追求的不仅仅是证明,更重要的是理解、发现和创造,是解决问题的数学精神和乐趣。这是一种新的求实精神,因而它更多的是对传统数学教学的矫正,至少也是一种有益的补充。 我们坚信:每当我们从数学的本质特点和学生的认知特点出发,运用CAI这种工具和载体,通过数学实验这种教与学的方式,去致力于影响学生数学认知结构的意义建构,去帮助学生本质地理解数学,培养数学精神和发现、创造的能力时,我们就把握住了数学教育的时代性、科学性,我们就深入到了数学素质教育的核心。伴随着CAI技术的日新月异,数学实验的教学内容将逐渐增加,实验素材库将不断壮大,实验技术将更为先进与精巧,因而数学实验的教学思想和模式将具有更为广阔的天地、更为重大的作为。

171 评论

相关问答

  • 有关小学数学教学的论文题目

    新颖的数学论文题目有: 1、数学模型在解决实际问题中的作用。 2、中学数学中不等式的证明。 3、组合数学与中学数学。 4、构造方法在数学解题中的应用。 5、高中

    小琳子雄霸天下 2人参与回答 2023-12-07
  • 有关初中化学教学的论文题目

    初中化学论文范文一(1)。题目:提高化学实验教学效率彰显初中化学学科之价值。摘要:初中化学实验教学是学生化学学习的重要组成部分,更是学生将化学学习联系日常生活的

    小希很爱小希 5人参与回答 2023-12-10
  • 数学教学论文主题有哪些类型

    在一篇数学 教育 论文中,题目是论文的要件之首,它不同于一般 文章 的题目,我们要重视题目的重要性。以下是我为大家精心准备的数学教育论文题目,欢迎阅读!

    粉红蚕宝宝 3人参与回答 2023-12-06
  • 有关小学数学教学的论文有文献

    小学 六年级数学 的教学在小学教学中占着很重要的地位,作为数学 教育 工作者,我们有义务激发学生对于数学学习的热情和兴趣,开发学生的思维,增强学生的自信

    寻找茉莉花 2人参与回答 2023-12-09
  • 有关数学文化论文题目

    1、选题尽量与日常工作结合起来一是便于收集数据,二是通过论文写作,对考生今后工作也有帮助,一举两得。反之,选一个与工作毫不相干的题目,从头开始,只能落得个事倍功

    一森有你 4人参与回答 2023-12-09