为萍伤心航
微积分基本定理的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。微积分基本定理的定义牛顿-莱布尼茨公式(Newton-Leibnizformula),通常也被称为微积分基本定理,揭示了定积分与被积函数的原函数或者不定积分之间的联系。它简化了定积分的计算,只要知道被积函数的原函数,总可以求出定积分的精确值或一定精度的近似值。牛顿-莱布尼茨公式是联系微分学与积分学的桥梁,它是微积分中最基本的公式之一。它证明了微分与积分是可逆运算,同时在理论上标志着微积分完整体系的形成,从此微积分成为一门真正的学科。牛顿-莱布尼茨公式简化了定积分的计算,利用该公式可以计算曲线的弧长,平面曲线围成的面积以及空间曲面围成的立体体积,这在实际问题中有广泛的应用,例如计算坝体的填筑方量。
AstrophelandStella
1.函数定义域的求法:y=1/x , D: x≠0 , (-∞,0) U (0,+∞)y=x , D: x≥0, [0, +∞ ]y=㏒ x , D: x>0, (0, +∞)y=tanx, D: x≠kπ+π/2 , k∈Zy=cotx, D:x≠kπ , k∈Zy=arcsin(或arccosx) , D: |x|≤1, [-1, 1]2.常见的偶函数:|x| , cosx , x (n为正整数), e , e ……常见的奇函数:sinx , tanx , 1/x , x , arcsinx , arctanx ,……3.常见的函数周期:sinx , cosx , 其周期T=2π;tanx , cotx , |sinx| , |cosx| , 其周期 T=π.4.三个恒等式:a =x ; arcsinx + arccosx = π/2 ; arctanx + arccotx = π/25.常用的等价形式:当x→0时, sinx ~ x , arcsinx ~ x , tanx ~ x , arctan x ~ x ,㏑(1+ x) ~ x , e –1 ~ x , 1-cosx ~ (1/2)x², (1+x) -1 ~ (1/n)x6.极限:Lim——— =1 , Lim( 1+x ) = e当x→+∞时,以下各函数趋势于+∞的速度为:㏑x , xⁿ (n>0) , a (a>1) , x由慢到快当n→∞时㏑x , xⁿ (n>0) , a (a>1) , n! , x由慢到快7.积分中值定理:若f(x)在[a,b]上连续,则在[a,b]上至少存在一个点ξ使 ∫ f(x)dx=f(ξ)(b-a)8.微分中值定理:若函数f(x)满足条件:函数f(x)在x 的某邻域内有定义,并且在此邻域内恒有f(x)≤f (x )或f(x)≥f (x ),f(x)在 x 处可导,则有f′(x )=09.洛尔定理:设函数f(x)满足条件:在闭区间[a,b]上连续;在开区间(a,b)内可导;f(a)=f(b),则在(a,b)内至少存在一个ξ,使f′(ξ)=010.拉格朗日中值定理:设函数f(x)满足条件:在闭区间[a,b]上连续;在开区间(a,b)内可导;f(a)=f(b),则在(a,b)内至少存在一个ξ,使———— = f′(ξ)
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。 一、高等数学在地方高等职业教育中遇到的问题及
学位申请者为申请学位而提出撰写的学术论文叫学位论文。这种论文是考核申请者能否被授予学位的重要条件。学位申请者如果能通过规定的课程考试,而论文的审查和答辩合格,那
微积分基本定理的发现,使人们找到了解决曲线的长度,曲线围成的面积和曲面围成的体积这些问题的一般方法。微积分基本定理的定义牛顿-莱布尼茨公式(Newton-Lei
微积分是高等数学的一部分知识,关于微积分的论文有哪些?接下来我为你整理了数学微积分论文的 范文 ,一起来看看吧。 摘要:初等微积分作为高等数学的一部分,属于
数学专业毕业论文选题方向如下: 1、并行组合数学模型方式研究及初步应用。 2、数学规划在非系统风险投资组合中的应用。 3、金融经济学中的组合数学问题。 4、竞赛