• 回答数

    4

  • 浏览数

    283

守望的夜
首页 > 学术期刊 > 基因编辑技术最新突破

4个回答 默认排序
  • 默认排序
  • 按时间排序

飞天大圣朱七

已采纳

今天我们要讲的是 生命科学发展的能工巧匠—基因编辑技术 ,该技术通过人为的对目的基因进行修饰,实现其编辑功能,从而达到改变目的细胞基因型的目的。 2020年的诺贝尔化学奖授予了詹妮弗·杜德纳(Jennifer Doudna)和艾曼纽·卡彭蒂耶(Emmanuelle Charpentier),以表彰他们对基因编辑技术CRISPR的研究成果。在CRISPER-Cas9技术开发之前,第一代锌指核酸酶(ZFNs)技术以及第二代转录激活因子效应物核酸酶(TALENs)已被广泛应用。三者的原理都是通过在基因组序列上诱导双链断裂(DSB),并随后通过内源性修复机制进行纠正,达到基因片段缺失、插入、突变等基因编辑的目的。 通过同源重组(HR)将内源性基因组序列与外源供体DNA分子进行交换是一个几十年前就已为人所知的过程。已故的奥利弗·史密斯(Oliver Smithies)首次阐明了同源DNA分子如何重组并正确插入哺乳动物染色体的特定位置。为此,史密斯与马里奥·卡佩基(Mario Capecchi)以及马丁·埃文斯(Martin Evans)共同获得了2007年的诺贝尔生理学或医学奖。  2009科学家首次使用ZFNs技术制造了世界上第一个基因敲除大鼠,1996年ZFNs技术被大力发展,该技术通过改造ZFN的结构域,可以人为设计识别特定DNA的ZFN并促使其与目的DNA序列进行结合,随后,核酸内切酶FOKI可对DNA双链进行切割形成DSB,最后完成DNA的自我修复。该技术在发展过程中有设计简单,效率较高的特点,但是随着科学的发展,人们发现其具有周期长、易脱靶 、细胞毒性大的缺点。 第二代基因编辑技术TALEN作为ZFNs的替代产品,在2021年进入快速开发期,2012年,科学杂志将TALEN技术列入了年度十大科学突破列表,TALE的全称是Transcription Activator-Like Effector,即转录激活因子样效应蛋白,来源于植物病原菌, TALEN技术的主要原理是通过两个TALE靶向识别靶点两侧的序列;每个TALE融合一个FokI内切酶结构域;FokI通过TALE靶向形成二聚体切割靶点,诱导双链断裂,促使DNA进行自我修复过程并最终达到基因编辑的目的,TALEN具有技术设计灵活识别特异性强的优点。 ZFNs用30个氨基酸组成一个对应三碱基的DNA识别结构域,而TALE蛋白用34个氨基酸组成一个仅精准对应一个碱基的DNA识别结构域。此外,相比于ZFNs技术,TALE有一个决定性的优点,就是可模块化,通过删减、添加、自由组合不同的TALE蛋白,就可以轻易地定位DNA片段,将基因编辑周期缩短。但是,用脂质体转染法还是电穿孔法转染细胞构建细胞系,病毒所能运送的DNA序列也是有限的,而使用病毒侵染法递送外援DNA进行基因治疗,转染效率也不可避免地与蛋白质大小成反比,所以太大的TALE无疑会导致DNA的切割效率降低。此外,该项技术也存在与ZFNs一样的脱靶率高,细胞毒性大的缺点。 不过,科学家们很快开发出了新一代基因编辑技术,相比于前两代技术更为高校、快捷。准确且价位低,那就是我们熟知的CRISPR/Cas9技术,主要组成部分是成簇的规律性间隔的短回文重复序列CRISPR以及核算内切酶Cas9组成, 2011年,CRISPR/Cas9系统的分子机制被揭示, 2014年,一位美国的生物化学家Jennifer首先阐明了CRISPR/Cas9系统的工作原理,证明它可以根据一段向导RNA(gRNA)的指引,找到对应的DNA序列,并将其切开。CRISPR/Cas9系统的工作原理是 crRNA通过碱基配对与 tracrRNA结合形成 tracrRNA/crRNA 复合物,此复合物引导核酸酶 Cas9 蛋白在与 crRNA 配对的序列靶位点剪切双链 DNA。而通过人工设计 crRNA 和 tracrRNA 这两种 RNA,改造成具有引导作用的sgRNA ,从而引导 Cas9 对 DNA 的定点切割。随后不久,MIT的华人生物学家张锋证明了这一系统同样可以在哺乳动物细胞中使用。CRISPR/Cas9系统是细菌和古菌特有的一种天然防御系统,用于抵抗病毒或外源性质粒的侵害。当外源基因入侵时,该防御系统的 CRISPR 序列会表达与入侵基因组序列相识别的 RNA,然后 CRISPR 相关酶在序列识别处切割外源基因组DNA,从而达到防御目的。  CRISPR/Cas9技术原理 1.sgRNA与Cas9蛋白结合,形成RNP复合物 2.RNP复合物在sgRNA的引导下,定位到基因组上的靶位点 3.Cas9蛋白对靶位点的DNA双链进行切割,产生双链断裂(DSB) 4.DSB引起细胞的紧急修复机制:非同源末端连接(NHEJ)修复或者同源重组修复(HDR) 5.绝大多数情况下(>80%),细胞采用NHEJ修复路径,使得靶位点位置随机产生个别碱基的删除或插入(Indel),得到基因敲除模型 6.极少数情况下(<20%),且细胞内存在同源片段时,细胞采用HDR修复路径,使得靶位点产生精确修复 7.在同源片段中引入外源基因片段或者突变碱基,可得到基因定点插入模型或者基因定点突变模型 近几年,CRISPR/Cas基因编辑技术飞速发展,涉及在生物、医学、农业以及环境等多个领域的应用, 2017年CRISPR/Cas9基因编辑技术应用于CAR-T疗法;杨璐菡等在Science发表文章,通过CRISPR/Cas9技术完成了对猪基因组中的内源逆转录病毒(PERV)序列的敲除。同年,杂交水稻之父”袁隆平院士宣布使用CRISPR/Cas9技术完成了对水稻中与镉吸收和积累相关的基因的敲除。 目前为止,关于CRISPR/Cas9技术的新突破不断涌现,相比于前两代基因编辑技术,CRISPR/Cas9技术切割效率极高,便利性强,ZFNs与TALENs需要用成百上千个碱基的长度来完成定位系统的组装,而CRISPR则只需要与目的基因一一对应的一段gRNA即可完成这个任务,且Cas9蛋白自己本身就具有核酸内切酶的活性,不需额外的核酸内切酶。为今后大范围治疗点突变遗传疾病提供了极大的便利。此外,该技术还有设计简单,能靶向几乎任意细胞任意序列的优点。 海星生物通过不断探索,开发的VIRUS-Free技术通过构建转座系统质粒,将质粒转染细胞,在转座酶的作用下,高拷贝的Cas9蛋白与sgRNA表达元件被整合到基因组上,比传统的病毒法节省了3-4周,价格节省了约40%。随着基因编辑技术的发展,海星生物将紧随科技发展的步伐,为您的科学研究保驾护航。  参考文献 Knott GJ, Doudna JA. CRISPR-Cas guides the future of genetic engineering. Science. 2018 Aug 31;361(6405):866-869. doi: 10.1126/science.aat5011. Bak RO, Gomez-Ospina N, Porteus MH. Gene Editing on Center Stage. Trends Genet. 2018 Aug;34(8):600-611. doi: 10.1016/j.tig.2018.05.004. Fernández A, Josa S, Montoliu L. A history of genome editing in mammals. Mamm Genome. 2017 Aug;28(7-8):237-246. doi: 10.1007/s00335-017-9699-2.

306 评论

小帅cgnn

类器官 类器官(Organoids),是指利用成体干细胞(ESCs)或诱导式多能干细胞(iPSCs)进行体外三维(3D)培育的具有一定空间结构的组织类似物。类器官能高度模拟体内组织结构及功能并能够长期稳定传代培养。类器官模型是介于细胞系和动物模型之间的一种新型功能化体外模型,可用于解析遗传发育、建立疾病模型、筛选药物和检测毒性以及探索个性化医疗方案。迄今为止世界各国科学家陆续培养出脑、肝、胃、肺、肠、肾脏和胰腺等各种类器官。 2013年,类器官技术被《Science》评为十大科技突破之一,2017年,又被《Nature Methods》评为生命科学领域的年度技术(Method of the Year 2017)。 荷兰科学家Hans Clevers教授是类器官研究领域国际公认的先驱和鼻祖,早在2009年,Hans Clevers就发现Lgr5蛋白是肠道干细胞的标志物,并成功建立了首个肠道干细胞体外3D类器官培养体系,开创了类器官作为疾病模型的研究时代。 目前,类器官在生命科学研究中应用广泛,通过改变不同类器官的基因可以极大地帮助研究生物学过程和疾病建模。然而,由于缺乏简单的基因组工程方法,基因组编辑人类类器官的构建比较困难。 CRISPR/Cas9是进行基因编辑的强大工具,可以对基因进行定点的精确编辑。在向导RNA(guide RNA,gRNA)和Cas9蛋白的参与下,待编辑的细胞基因组DNA可被看作病毒或外源DNA,得到精确编辑。 在2020年3月份,HansClevers研究团队在《Nature Cell Biology》杂志上发表学术论文《Fast and efficient generation of knock-in human organoids using homology-independent CRISPR–Cas9 precision genome editing》。 其利用非同源依赖的CRISPR-Cas9技术,可快速高效地对人源类器官进行基因敲入,他们将该技术命名为CRISPR–HOT(CRISPR-Cas9-mediated homology-independent organoid transgenesis),为人源类器官的内源基因敲入提供了重要的工具平台。 研究人员利用这种新方法分析了肝细胞如何分裂以及DNA过多异常肝细胞是如何出现的,并发现敲除癌症基因TP53,异常肝细胞的非结构化分裂会更频繁。以上发现或有助于深入研究相关癌症的发展过程。 研究者们为了印证CRISPR–HOT技术在人源类器官中进行基因敲入的方法可行,首先在两种难以转染的人源类器官(肝脏导管类器官及肝细胞类器官)进行测试,并对两种不同介导方式的基因敲入技术产生的类器官进行对比分析。 图示: HDR与NHEJ的技术路线以及优劣比较 结果发现,虽然抑制TP53的活性之后,HDR介导的基因敲入方式的效率略有提高,但仍然比NHEJ介导的基因编辑效率要低。Hans Clevers研究组的工作用CRISPR-HOT方法,建立了不依赖于对TP53活性抑制的以NHEJ介导的基因编辑技术,简化了基因敲入的流程,对于肝细胞等成体干细胞来源的类器官可视化研究提供了可靠的基因编辑方式。 2020年11月,Hans Clevers研究团队又在《Nature Protocols》杂志发表学术论文《Establishment of human fetal hepatocyte organoids and CRISPR–Cas9-based gene knockin and knockout in organoid cultures from human liver》,阐述利用CRISPR/Cas9基因编辑技术探究人类胎儿肝细胞作为类器官长期扩增的培养条件。 在文章中,作者提出:针对人类胎儿肝细胞和人类肝导管类器官的基因组编辑需要两种不同的实验程序。对于人类胎儿肝细胞类器官,采用基于电转杯电转染的转染策略。为此,类器官必须分解成单细胞或小块细胞,建议从第5代及以后开始对肝细胞类器官进行基因组工程设计,肝细胞类器官电穿孔的能力通常不会随时间而降低,作者已经成功地对人胎儿肝细胞类器官进行了基因组工程,可以做到至少第50代为止。 图示:人类胎儿肝细胞类器官的基因组 工程技术概略图 (采用电转杯电转染) 相反,对于人肝导管类器官,转染步骤是对完整的类器官进行的,是一种离体组织电转染的方式。 图示:人类肝脏导管类器官的基因组工程技术概略图 (采用离体组织电转染) 另外针对不同的基因编辑方式(Knock in和Knock out),作者也分享了非常详细的应对策略(见下图)。 俗话说,工欲善其事,必先利其器。那么在Hans Clevers研究团队深耕的类器官领域中,属于他们的一把利器是什么呢?我们发现,在大牛们的研究过程当中,对细胞的转染操作贯穿其中。而NEPA GENE的 NEPA21基因高效转染系统 正是他们所选用的高效电转仪。 NEPA21 基本介绍 【1】采用全新设计的电转程序,电压衰减(Voltage Decay)模式;基因导入+反向导入模式。 【2】不需要特殊转染试剂辅助,节省实验成本;电转程序中的各项参数实时可见、可调,特别适用于优化原代细胞、非常见细胞的电转参数。 NEPA21高效基因转染系统独有的电压衰减(Voltage Decay)设计,可在获得高转染效率的同时,提高细胞存活率。专门针对难转染的原代免疫细胞、干细胞、神经细胞、活体动物、受精卵以及宫内胚胎等转染。 得益于NEPA21良好的应用体验,Hans Clevers利用其已在类器官领域取得了丰硕的研究成果。目前已有多篇应用文献,是Crispr/Cas9基因编辑的第一品牌电转系统。NEPE21——让细胞转染更简单、更Free。

332 评论

新艺能门窗公司

近些年来,科技技术飞速发展,涌现出了许多基础科技技术突破,以下列举几个:1. 量子计算技术:量子计算机是一种基于量子力学原理运行的计算机,其在解决某些运算问题中有很大的速度优势。目前已经实现了大规模量子比特数的计算机。2. 人工智能技术:在机器学习和深度学习技术的支持下,人工智能技术已经成为很多领域的重要工具和解决方案,包括自然语言处理、图像识别、智能家居、自动驾驶等。3. 区块链技术:区块链是一种基于去中心化、不可篡改的分布式数据库技术,可以实现数字资产的快速交易和安全保障,已经逐渐成为金融、供应链等多个领域的关键技术。4. 纳米技术: 纳米技术是制造纳米级别材料、器件和系统的关键技术。它为很多领域打造了新的前沿技术,包括电子、光电、医学、材料等。5. 生物技术:生物技术在基因编辑、基因组学、蛋白质组学、代谢组学等方面的突破和发展,为制药和生命科学开辟了全新的道路和解决方案。这些突破的出现,推动着科技进步和社会发展,它们的应用将改变我们的生活方式和未来的发展方向。

127 评论

豆豆侠3

近些年来,基础科技领域发生了许多重大的突破。以下是其中一些值得关注的:

1、量子计算机:

2019年,谷歌宣布在其Sycamore量子计算机上完成了一项具有里程碑意义的计算任务,证明了量子计算机在某些情况下比传统计算机更有效。这项技术的发展可能会导致许多应用程序的重大突破,例如更快的药物开发和更高效的数据加密。

2、基因编辑:

基因编辑技术,特别是CRISPR-Cas9技术,已成为生命科学领域的一个重要工具。它可以准确地更改基因序列,对于治疗遗传性疾病、创新农业生产和研究动植物等领域都具有巨大的潜力。

3、人工智能:

深度学习和神经网络技术的进步使得人工智能在许多领域的应用更加广泛和深入。例如,自然语言处理和计算机视觉技术的进步,使得机器能够理解自然语言和图像,从而实现更加智能的自动化和人机交互。

4、太阳能技术:

太阳能技术的成本在过去十年中急剧下降,这使得太阳能电力的使用变得更加实惠和可行。此外,新的太阳能电池技术也在不断研究和开发中,可能会进一步提高太阳能电力的效率和可靠性。

5、量子通信:

量子通信是一种基于量子力学原理的安全通信技术,它可以实现绝对安全的数据传输。近年来,量子通信技术取得了重大进展,例如实现了远距离量子密钥分发和量子保密直接通信。

这些技术突破将对许多行业和领域产生深远的影响,带来新的商业机会和社会发展机遇。

168 评论

相关问答

  • 基因编辑属于基因工程吗

    你说的基因编辑的话,是指分子生物学相关的实验操作。专业的话分子生物学,其实其他专业也会应用到这样的实验操作,什么微生物学啊等等。本科生有些也会做些分子相关的实验

    wwddllhhppqq 6人参与回答 2023-12-11
  • 基因编辑技术最新突破

    今天我们要讲的是 生命科学发展的能工巧匠—基因编辑技术 ,该技术通过人为的对目的基因进行修饰,实现其编辑功能,从而达到改变目的细胞基因型的目的。 2020年

    守望的夜 4人参与回答 2023-12-10
  • 基因编辑定义

    可以。基因基因基因编辑技术指能够让人类对目标基因进行“编辑”,实现对特定DNA片段的敲除、加入等。而CRISPR/Cas9技术自问世以来,就有着其它基因编辑技术

    summaryzhen 4人参与回答 2023-12-10
  • 转基因技术论文

    你等我,我绝对给你答案,拜托拜托

    xiaomakuaipao 4人参与回答 2023-12-11
  • 北京新经典最新招聘编辑

    北京新未来经典教育集团军队文职是一家专业从事军队文职培训的机构,致力于为军队文职人员提供高质量的培训服务。该机构拥有一流的教学团队和经验丰富的讲师,为学员提供深

    微笑的可爱多 4人参与回答 2023-12-05