中国神运
我做过上届师兄师姐的论文答辩记录工作,感觉论文答辩并不难,首先请放心,不要紧张,轻松点,答辩的老师都不会为难学生的。答辩中最主要的问题就是你一定要熟悉你的论文,老师在答辩前根本就没有时间看你的论文,都是临时翻开随便瞄瞄,当他们看到哪个地方可能就会对你提些相关的问题,一般来说他们也就只是按照表面文字来提问,并不会提出很深奥的问题来,所以,只要你对论文熟悉就行了,换句话说,答辩的老师也就只是通过几个问题来看你对论文的态度而已,抄的论文也没关系,多看看,一定要看熟,这是关键中的关键,如果对你自己的论文都不熟悉,其他的事项注意得再多也是枉然。回答老师问题的时候要自信,也要谦虚,涉及到自己不是很清楚的问题一定不要企图蒙混过关,要知道,大学里的老师都不是吃白饭的。一点,回答问题的态度一定要诚恳。其他需要注意的问题就是一般的礼貌问题咯,进去之前要敲门,进去之后要问好,这些基本的礼貌问题应该都知道的吧~希望这些都对楼主有所帮助,祝楼主答辩顺利通过!同时也祝自己的论文答辩顺利通过!o(∩_∩)o...
守護天使109
三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具.高考试题中近一半的试题与这三个“二次”问题有关.本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法. ●难点磁场 已知对于x的所有实数值,二次函数f(x)=x2-4ax+2a+12(a∈R)的值都是非负的,求关于x的方程 =|a-1|+2的根的取值范围. ●案例探究 〔例1〕已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中a、b、c满足a>b>c,a+b+c=0,(a,b,c∈R). (1)求证:两函数的图象交于不同的两点A、B; (2)求线段AB在x轴上的射影A1B1的长的取值范围. 命题意图:本题主要考查考生对函数中函数与方程思想的运用能力.属于★★★★★题目. 知识依托:解答本题的闪光点是熟练应用方程的知识来解决问题及数与形的完美结合. 错解分析:由于此题表面上重在“形”,因而本题难点就是一些考生可能走入误区,老是想在“形”上找解问题的突破口,而忽略了“数”. 技巧与方法:利用方程思想巧妙转化. (1)证明:由 消去y得ax2+2bx+c=0 Δ=4b2-4ac=4(-a-c)2-4ac=4(a2+ac+c2)=4〔(a+ c2〕 ∵a+b+c=0,a>b>c,∴a>0,c<0 ∴ c2>0,∴Δ>0,即两函数的图象交于不同的两点. (2)解:设方程ax2+bx+c=0的两根为x1和x2,则x1+x2=- ,x1x2= . |A1B1|2=(x1-x2)2=(x1+x2)2-4x1x2 ∵a>b>c,a+b+c=0,a>0,c<0 ∴a>-a-c>c,解得 ∈(-2,- ) ∵ 的对称轴方程是 . ∈(-2,- )时,为减函数 ∴|A1B1|2∈(3,12),故|A1B1|∈( ). 〔例2〕已知关于x的二次方程x2+2mx+2m+1=0. (1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m的范围. (2)若方程两根均在区间(0,1)内,求m的范围. 命题意图:本题重点考查方程的根的分布问题,属★★★★级题目. 知识依托:解答本题的闪光点是熟知方程的根对于二次函数性质所具有的意义. 错解分析:用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的难点. 技巧与方法:设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制. 解:(1)条件说明抛物线f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得 ∴ . (2)据抛物线与x轴交点落在区间(0,1)内,列不等式组 (这里0<-m<1是因为对称轴x=-m应在区间(0,1)内通过) ●锦囊妙计 1.二次函数的基本性质 (1)二次函数的三种表示法: y=ax2+bx+c;y=a(x-x1)(x-x2);y=a(x-x0)2+n. (2)当a>0,f(x)在区间〔p,q〕上的最大值M,最小值m,令x0= (p+q). 若-
0时,f(α)
同志你好: 一下是我给你总结的资料,请核对后使用。 最后祝你工作愉快!计算机图形学 计算机图形学(Computer Graphics,简称
1、几个带参数的二阶边界值问题的正解的存在性研究2、关于丢番图方程1+x+y=z的一类特殊情况的研究3、变限积分函数的性质及应用4、有限集上函数的迭代及其应用希
论文数据编的答辩直接跟老师明说,不要等到被老师查出来,这样会更加尴尬。 看你编的数据是原始数据还是什么,不管是编的还是调查得来的,都要对文章的数据进行推算,文章
初三下册的书上有。
掌握一些技巧,毕业论文答辩很好过的。对论文要非常熟悉,千万不要在论文里写自己不熟悉的东西,如果答辩的老师随便在论文里拿出几个名词来提问,而自己答不上来会比较尴尬