爱生活的哒哒
数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置. 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视. 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础." 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述. 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢 5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.总之,数学文化离不开数学史,但是不能仅限于数学史.当数学文化的魅力真正渗入教材,到达课堂,
辉煌人生
数学作为一种文化现象,早已是人们的常识.历史地看,古希腊和文艺复兴时期的文化名人,往往本身就是数学家.进入21世纪之后,数学文化的研究更加深入.一个重要的标志是数学文化走进中小学课堂,渗入实际数学教学,努力使学生在学习数学过程中真正受到文化感染,产生文化共鸣,体会数学的文化品位,体察社会文化和数学文化之间的互动.中国在春秋战国时期也有百家争鸣的学术风气,但是没有实行古希腊统治者之间的民主政治,而是实行君王统治制度.春秋战国时期,也是知识分子自由表达见解的黄金年代.当时的思想家和数学家,主要目标是帮助君王统治臣民,管理国家.因此,中国的古代数学,多半以"管理数学"的形式出现,目的是为了丈量田亩,兴修水利,分配劳力,计算税收,运输粮食等国家管理的实用目标.理性探讨在这里退居其次.因此,从文化意义上看,中国数学可以说是"管理数学"和"木匠数学",存在的形式则是官方的文书.古希腊的文化时尚,是追求精神上享受,以获得对大自然的理解为最高目标.因此,"对顶角相等"这样的命题,在《几何原本》里列入命题15,借助公理3(等量减等量,其差相等)给予证明.在中国的数学文化里,不可能给这样的直观命题留下位置. 同样,中国数学强调实用的管理数学,却在算法上得到了长足的发展.负数的运用,解方程的开根法,以及杨辉(贾宪)三角,祖冲之的圆周率计算,天元术那样的精致计算课题,也只能在中国诞生,而为古希腊文明所轻视. 我们应当充分重视中国传统数学中的实用与算法的传统,同时又必须吸收人类一切有益的数学文化创造,包括古希腊的文化传统.当进入21世纪的时候,我们作为地球村的村民,一定要溶入世界数学文化,将民族性和世界性有机地结合起来.揭示数学文化内涵,走出数学孤立主义的阴影。数学的内涵,包括用数学的观点观察现实,构造数学模型,学习数学的语言,图表,符号表示,进行数学交流.通过理性思维,培养严谨素质,追求创新精神,欣赏数学之美.半个多世纪以前,著名数学家柯朗在名著《数学是什么》的序言中这样写道:"今天,数学教育的传统地位陷入严重的危机.数学教学有时竟变成一种空洞的解题训练.数学研究已出现一种过分专门化和过于强调抽象的趋势,而忽视了数学的应用以及与其他领域的联系.教师学生和一般受过教育的人都要求有一个建设性的改造,其目的是要真正理解数学是一个有机整体,是科学思考与行动的基础." 2002年8月20日,丘成桐接受《东方时空》的采访时说:"我把《史记》当作歌剧来欣赏","由于我重视历史,而历史是宏观的,所以我在看数学问题时常常采取宏观的观点,和别人的看法不一样." 这是一位数学大家的数学文化阐述. 《文汇报》2002年8月21日摘要刊出钱伟长的文章《哥丁根学派的追求》,其中提到:"这使我明白了:数学本身很美,然而不要被它迷了路.应用数学的任务是解决实际问题,不是去完善许多数学方法,我们是以解决实际问题为己任的.从这一观点上讲,我们应该是解决实际问题的优秀'屠夫',而不是制刀的'刀匠',更不是那种一辈子欣赏自己的刀多么锋利而不去解决实际问题的刀匠."这是一个力学家的数学文化观.和所有文化现象一样,数学文化直接支配着人们的行动.孤立主义的数学文化,一方面拒人于千里之外,使人望数学而生畏;另一方面,又孤芳自赏,自言自语,令人把数学家当成"怪人".学校里的数学,原本是青少年喜爱的学科,却成为过滤的"筛子",打人的"棒子".优秀的数学文化,会是美丽动人的数学王后,得心应手的仆人,聪明伶俐的宠物.伴随着先进的数学文化,数学教学会变得生气勃勃,有血有肉,光彩照人.多侧面地开展数学文化研究谈到数学文化,往往会联想到数学史.确实,宏观地观察数学,从历史上考察数学的进步,确实是揭示数学文化层面的重要途径.但是,除了这种宏观的历史考察之外,还应该有微观的一面,即从具体的数学概念,数学方法,数学思想中揭示数学的文化底蕴.以下将阐述一些新视角,力求多侧面地展现数学文化.1. 数学和文学.数学和文学的思考方法往往是相通的.举例来说,中学课程里有"对称",文学中则有"对仗".对称是一种变换,变过去了却有些性质保持不变.轴对称,即是依对称轴对折,图形的形状和大小都保持不变.那么对仗是什么 无非是上联变成下联,但是字词句的某些特性不变.王维诗云:"明月松间照,清泉石上流".这里,明月对清泉,都是自然景物,没有变.形容词"明"对"清",名词"月"对"泉",词性不变.其余各词均如此.变化中的不变性质,在文化中,文学中,数学中,都广泛存在着.数学中的"对偶理论",拓扑学的变与不变,都是这种思想的体现.文学意境也有和数学观念相通的地方.徐利治先生早就指出:"孤帆远影碧空尽",正是极限概念的意境.2.欧氏几何和中国古代的时空观.初唐诗人陈子昂有句云:"前不见古人,后不见来者,念天地之悠悠,独怆然而涕下."这是时间和三维欧几里得空间的文学描述.在陈子昂看来,时间是两头无限的,以他自己为原点,恰可比喻为一条直线.天是平面,地是平面,人类生活在这悠远而空旷的时空里,不禁感慨万千.数学正是把这种人生感受精确化,形式化.诗人的想象可以补充我们的数学理解.3. 数学与语言.语言是文化的载体和外壳.数学的一种文化表现形式,就是把数学溶入语言之中."不管三七二十一"涉及乘法口诀,"三下二除五就把它解决了"则是算盘口诀.再如"万无一失",在中国语言里比喻"有绝对把握",但是,这句成语可以联系"小概率事件"进行思考."十万有一失"在航天器的零件中也是不允许的.此外,"指数爆炸""直线上升"等等已经进入日常语言.它们的含义可与事物的复杂性相联系(计算复杂性问题),正是所需要研究的."事业坐标""人生轨迹"也已经是人们耳熟能详的词语.4. 数学的宏观和微观认识.宏观和微观是从物理学借用过来的,后来变成一种常识性的名词.以函数为例,初中和高中的函数概念有变量说和对应说之分,其实是宏观描述和微观刻画的区别.初中的变量说,实际上是宏观观察,主要考察它的变化趋势和性态.高中的对应则是微观的分析.在分段函数的端点处,函数值在这一段,还是下一段,差一点都不行.政治上有全局和局部,物理上有牛顿力学与量子力学,电影中有全景和细部,国画中有泼墨山水画和工笔花鸟画,其道理都是一样的.是否要从这样的观点考察函数呢 5. 数学和美学."1/2+1/3=2/5 "是不是和谐美 二次方程的求根公式美不美 这涉及到美学观.三角函数课堂上应该提到音乐,立体几何课总得说说绘画,如何把立体的图形画在平面上.欣赏艾舍尔的画,计算机画出的分形图,也是数学美的表现.
芝士大人
有关数学史的论文学习一门学科首先要弄清楚这是一门怎样的学科,《标准》明确提出要使学生“初步了解数学产生与发展的过程,体会数学对人类文明发展的作用”,而现阶段高中学生对数学的看法大都停留在感性的层面上——枯燥、难学。数学的本质特征是什么?当今数学究竟发展到了哪个阶段?在科学中的地位如何?与其它学科有什么联系?这些问题大都不被学生全面了解,而从数学史中可以找到这些问题的答案。 日本数学家藤天宏教授在第九次国际数学教育大会报告中指出,人类历史上有四个数学高峰:第一个是古希腊的演绎数学时期,它代表了作为科学形态的数学的诞生,是人类“理性思维”的第一个重大胜利;第二个是牛顿-莱布尼兹的微积分时期,它为了满足工业革命的需要而产生,在力学、光学、工程技术领域获得巨大成功;第三个是希尔伯特为代表的形式主义公理化时期;第四个是以计算机技术为标志的新数学时期,我们现在就处在这个时期。而数学历史上的三大危机分别是古希腊时期的不可公度量,17、18世纪微积分基础的争论和20世纪初的集合论悖论,它同前三个高峰有着惊人的密切联系,这种联系绝不是偶然,它是数学作为一门追求完美的科学的必然。学生可以从这种联系中发现数学追求的是清晰、准确、严密,不允许有任何杂乱,不允许有任何含糊,这时候学生就很容易认识到数学的三大基本特征——抽象性、严谨性和广泛应用性了。 同时,介绍必要的数学史知识可以使学生在平时的学习中对所学问题的背景产生更加深入的理解,认识到数学绝不是孤立的,它与其他很多学科都关系密切,甚至是很多学科的基础和生长点,对人类文明的发展起着巨大的作用。从数学史上看,数学和天文学一直都关系密切,海王星的发现过程就是一个很好的例子;它与物理学也密不可分,牛顿、笛卡儿等人既是著名的数学家也是著名的物理学家。在我们所处的新数学时期,数学(不仅仅是自然科学)逐步进入社会科学领域,发挥着意想不到的作用,可以说一切高技术的背后都有某种数学技术支持,数学技术已经成为知识经济时代的一个重要特征。这些认识对于一个学习数学十余年的高中生来说是很有必要,也是必不可少的。 二、 学习数学史有利于培养学生正确的数学思维方式 现行的数学教材一般都是经过了反复推敲的,语言十分精练简洁。为了保持了知识的系统性,把教学内容按定义、定理、证明、推论、例题的顺序编排,缺乏自然的思维方式,对数学知识的内涵,以及相应知识的创造过程介绍也偏少。虽利于学生接受知识,但很容易使学生产生数学知识就是先有定义,接着总结出性质、定理,然后用来解决问题的错误观点。所以,在教学与学习的过程中存在着这样一个矛盾:一方面,教育者为了让学生能够更快更好的掌握数学知识,将知识系统化;另一方面,系统化的知识无法让学生了解到知识大都是经过问题、猜想、论证、检验、完善,一步一步成熟起来的。影响了学生正确数学思维方式的形成。 数学史的学习有利于缓解这个矛盾。通过讲解一些有关的数学历史,让学生在学习系统的数学知识的同时,对数学知识的产生过程,有一个比较清晰的认识,从而培养学生正确的数学思维方式。这样的例子很多,比如说微积分的产生:传统的欧式几何的演绎体系是产生不了微积分的,它是牛顿、莱布尼兹在古希腊的“穷竭法”、“求抛物线弓形面积”等思想的启发下为了满足第一次工业革命的需要创造得到的,产生的初期对“无穷小”的定义比较含糊,也不像我们现在看到的这样严密,在数学家们的不断补充、完善下,经过几十年才逐步成熟起来的。 数学史的学习可以引导学生形成一种探索与研究的习惯,去发现和认识在一个问题从产生到解决的过程中,真正创造了些什么,哪些思想、方法代表着该内容相对于以往内容的实质性进步。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,有利于学生对一些数学问题形成更深刻的认识,了解数学知识的现实来源和应用,而不是单纯地接受教师传授的知识,从而可以在这种不断学习,不断探索,不断研究的过程中逐步形成正确的数学思维方式。 三、 学习数学史有利于培养学生对数学的兴趣,激发学习数学的动机 动机是激励人、推动人去行动的一种力量,从心理学的观点讲,动机可分为两个部分;人的好奇心、求知欲、兴趣、爱好构成了有利于创造的内部动机;社会责任感构成了有利于创造的外部动机。兴趣是最好的动机。在日本中学生夺取国际IEA调查总分第一名的同时,却发现日本学生不喜欢数学的比例也是第一,这说明他们的好成绩是在社会、家长、学校的压力下获得的。中国的情况如何呢?尚无全面的报道,但河南省新乡市四所中学的高中生学习数学情况的调查发现:“我不喜欢数学,但为了高考,我必须学好数学”的学生占被调查者的比例高达62.21%,而对数学“很感兴趣”的只有23.12%。可见目前中学生的学习动机不明确,对数学的兴趣也很不够,这些都极大地影响了学习数学的效果。但这并不是因为数学本身无趣,而是它被我们的教学所忽视了。在数学教育中适当结合数学史有利于培养学生对数学的兴趣,克服动机因素的消极倾向。 数学史中有很多能够培养学生学习兴趣的内容,主要有这几个方面:一是与数学有关的小游戏,例如巧拿火柴棒、幻方、商人过河问题等,它们有很强的可操作性,作为课堂活动或是课后研究都可以达到很好的效果。二是一些历史上的数学名题,例如七桥问题、哥德巴赫猜想等,它们往往有生动的文化背景,也容易引起学生的兴趣。还有一些著名数学家的生平、轶事,比如说一些年轻的数学家成材的故事,《标准》中提到的“从阿贝尔到伽罗瓦”,阿贝尔22岁证明一般五次以上代数方程不存在求根公式,伽罗瓦创建群论的时候只有18岁。还有法国数学家帕斯卡,16岁成为射影几何的奠基人之一,19岁发明原始计算器;德国数学家高斯19岁解决正多边形作图的判定问题,20岁证明代数基本定理,24岁出版影响整个19世纪数论发展、至今仍相当重要的《算术研究》;还有的是许多出生贫穷卑微的数学家通过自己的艰苦努力,最终在的数学研究上有骄人成绩的例子,如19世纪的大几何学家施泰纳出身农家自幼务农,直到14岁还没有学过写字,18岁才正式开始读书,后来靠做私人教师谋生,经过艰苦努力,终于在30岁时在数学上做出重要工作,一举成名。如果在教学中加入这些学生感兴趣又有知识性的内容,消除学生对数学的恐惧感,增加数学的吸引力,数学学习也许就不再是被迫无奈的了。 四、学习数学史为德育教育提供了舞台 在《标准》的要求下,德育教育已经不是像以前那样主要是政治、语文、历史这些学科的事了,数学史内容的加入使数学教育有更强大的德育教育功能,我们从下几个方面来探讨一下。 首先,学习数学史可以对学生进行爱国主义教育。现行的中学教材讲的大都是外国的数学成就,对我国在数学史上的贡献提得很少, 其实中国数学有着光辉的传统,有刘徽、祖冲之、祖暅、杨辉、秦九韶、李冶、朱世杰等一批优秀的数学家,有中国剩余定理、祖暅公理、“割圆术”等具有世界影响的数学成就,对其中很多问题的研究也比国外早很多年。《标准》中“数学史选讲”专题3就是“中国古代数学瑰宝”,提到《九章算术》、“孙子定理”这些有代表意义的中国古代数学成就。 然而,现阶段爱国主义教育又不能只停留在感叹我国古代数学的辉煌上。从明代以后中国数学逐渐落后于西方,20世纪初,中国数学家踏上了学习并赶超西方先进数学的艰巨历程。《标准》中“数学史选讲”专题11—— “中国现代数学的发展”也提到要介绍“现代中国数学家奋发拼搏,赶超世界数学先进水平的光辉历程”。在新时代的要求下,除了增强学生的民族自豪感之外,还应该培养学生的“国际意识”,让学生认识到爱国主义不是体现在“以己之长,说人之短”上,在科学发现上全人类应该相互学习、互相借鉴、共同提高,我们要尊重外国的数学成就,虚心的学习,“洋为中用”。 其次,学习数学史可以引导学生学习数学家的优秀品质。任何一门科学的前进和发展的道路都不是平坦的,无理数的发现,非欧几何的创立,微积分的发现等等这些例子都说明了这一点。数学家们或是坚持真理、不畏权威,或是坚持不懈、努力追求,很多人甚至付出毕生的努力。阿基米德在敌人破城而入危及生命的关头仍沉浸在数学研究之中,为的是“我不能留给后人一条没有证完的定理”。欧拉31岁右眼失明,晚年视力极差最终双目失明,但他仍以坚强的毅力继续研究,他的论文多而且长,以致在他去世之后的10年内,他的论文仍在科学院的院刊上持续发表。对那些在平时学习中遇到稍微繁琐的计算和稍微复杂的证明就打退堂鼓的学生来说,介绍这样一些大数学家在遭遇挫折时又是如何执著追求的故事,对于他们正确看待学习过程中遇到的困难、树立学习数学的信心会产生重要的作用。 最后,学习数学史可以提高学生的美学修养。数学是美的,无数数学家都为这种数学的美所折服。能欣赏美的事物是人的一个基本素质,数学史的学习可以引导学生领悟数学美。很多著名的数学定理、原理都闪现着美学的光辉。例如毕达哥拉斯定理(勾股定理)是初等数学中大家都十分熟悉的一个非常简洁而深刻的定理,有着极为广泛的应用。两千多年来,它激起了无数人对数学的兴趣,意大利著名画家达芬奇、印度国王Bhaskara、美国第20任总统Carfield等都给出过它的证明。1940年,美国数学家卢米斯在所著《毕达哥拉斯命题艺术》的第二版中收集了它的370种证明,充分展现了这个定理的无穷魅力。黄金分割同样十分优美和充满魅力,早在公元前6世纪它就为毕达哥拉斯学派所研究,近代以来人们又惊讶地发现,它与著名的斐波那契数列有着十分密切的内在联系。同时,在感叹和欣赏几何图形的对称美、尺规作图的简单美、体积三角公式的统一美、非欧几何的奇异美等时,可以形成对数学良好的情感体验,数学素养和审美素质也得到了提高,这是德育教育一个新的突破口。
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考! 数学史的教育功能 摘要
数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考! 数学史的教育功能 摘要
数学的发展史世界数学发展史 数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。数学的希腊语Μαθηματικ? mathemat
古代发展史 秦汉是中国古代数学体系的形成时期,为使不断丰富的数学知识系统化、理论化,数学方面的专书陆续出现。现代中国历史最早的数学专著是1984年在湖北江陵张家
浅谈小学生的课堂自制能力