• 回答数

    3

  • 浏览数

    320

洋洋捌月
首页 > 学术期刊 > 氧化镉纳米颗粒的制备毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

北京钢材大全

已采纳

用CVD的方法,韩国高等技院做出来了,论文是Single-Crystalline ZnO Microtubes Formed by Coalescence of ZnO Nanowires Using a Simple Metal-Vapor Deposition Method 自己去找吧Chem. Mater. 2005, 17, 2752-2756

202 评论

DPWX遁遁

纳米粉体的制备目前主要有三种分类方法:第一种是根据原料的聚集状态分为固相法、液相法和气相法;第二种是按操作方式分为干法和湿法;第三种按制备原理分为物理法、化学法。这里重点介绍第三种分类方法。2.1物理法物理法即采用光、电技术使材料在真空或惰性气氛环境下蒸发或利用机械力研磨,然后使原子或分子结合形成纳米颗粒。此法通常对设备的要求很高,且消耗大量的能源。2.1.1气体冷凝法气体冷凝法是指在低压的惰性气体中加热金属,使其蒸发,产生原子雾,与惰性气体原子碰撞而失去能量,经冷凝后形成单个纳米颗粒。最后在液氮冷却棒上聚集起来,用聚四氟乙烯刮刀刮下并收集。纳米合金可通过同时蒸发数种金属得到;纳米氧化物可在蒸发过程中在真空室中通过纯氧氧化得到。这种方法的优点是制备的纳米粉体比较洁净。2.1.2溅射法用两块金属板分别作阳极和阴极,阴极为蒸发用的材料,在两电极间充入氩气,同时施加适当的电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从表面沉积下来。粒子的大小及尺寸分布主要取决于两电极间的电压、电流和气体的压力。此方法可制备多种高熔点和低熔点的纳米金属及多元化的化合物纳米颗粒。李良飞等利用磁控溅射法在非织造布表面进行ZnO镀层处理,制备出颗粒均匀、细致、稳定的纳米ZnO薄膜,分析了不同溅射条件下对ZnO薄膜表面形态的影响。2.1.3高能球磨法高能球磨法是近年来发展起来的一种制备纳米粉体的方法,球磨工艺的主要目的是减小离子的尺寸、固态合金化、混合或融合以及改变离子的形状。采用球磨方法,控制适当的条件可以得到纯元素、合金或复合材料的纳米粒子。由于该过程引入了大量的粉末颗粒应变、缺陷以及纳米级的微结构,其制备过程的热力学和动力学不同于普通的固态反应过程,有可能制备出常规法难以制备的新型纳米材料。其特点是操作简单、成本低,但产品容易被污染,因此纯度低,颗粒分布不均匀。某某等利用球磨法合成了不同粒径的纳米ZnO。Lin等利用球磨法合成了不同退火温度下的磁性纳米Fe3O4,得到的粒子粒径范围在12.5-46nm,对应的饱和磁化强度范围为52-66.4nm,而矫顽力在22.2nm时达到最大值。Goya用球磨法在有机载液中合成了一系列不同窄分布的磁性粒子,所有的粒子在室温下表现出超顺磁性,而且温度为10-20K时磁性消失。Zduji?等在空气氛围中利用高能球磨法将α-Fe2O3粉末完全转变成Fe3O4。2.2化学法化学法主要包括沉淀法、固相配位化学法、水热法、溶胶-凝胶法、微乳液法等。2.2.1沉淀法沉淀法是合成金属氧化物超细粉体最普遍的方法。它就是在金属盐溶液中加入适当的沉淀剂,控制合适的条件使金属离子生成各种形式的沉淀物,再将此沉淀物干燥或煅烧形成纳米粉体。其优点是可以广泛用以合成单一或复合氧化物超细粉体,反应过程简单,成本低,便于工业化生产。缺点是沉淀为胶状物,水洗、过滤困难;沉淀剂不易除去;若使用能够分解除去的氨水、碳酸铵作沉淀剂,许多离子可形成可溶性络合离子,沉淀过程中各种成分不易分离;水洗时要损失部分沉淀物等。根据沉淀的方式可分为直接沉淀法和均相沉淀法。2.2.1.1直接沉淀法直接沉淀法是在混合的金属盐溶液中加入沉淀剂,使生成的沉淀从溶液中直接析出,将阴离子从沉淀中除去,再经干燥或煅烧制得纳米粉体。优点是操作简单易行,对设备、技术要求不高,产品纯度高,制备成本低,但是所得产品粒度较大,粒径分布较宽。常用的沉淀剂有NH3·H2O、NaOH、Na2CO3、(NH4)2CO3、(NH4)2C2O4等。Ciobanua、Wang等利用直接沉淀法制备了纳米ZnO,并考察了其电学和光学性能。Jiang等用共沉淀法合成了窄分布的Fe3O4纳米粒子,并在其表面包覆了高分子,考察了其生物特性。Thapa等利用简单而又具应用前景的沉淀法合成了Fe3O4纳米粒子,发现当粒子的粒径在10nm以下时饱和磁化强度得到了提高,而且当粒子的粒径在10nm时有最佳的磁性,且可适用于各种应用,另外还利用这种尺度的磁性粒子合成了硅油基磁性流体。2.2.1.2均相沉淀法均相沉淀法是指利用某一化学反应使溶液中的构晶离子由溶液中缓慢地均匀地产生出来的方法。在这个方法中,加入到溶液中的沉淀剂不立刻与被沉淀组分发生反应,而是通过化学反应使沉淀剂在整个过程中均匀地释放出来,从而使沉淀在整个溶液中缓慢均匀地产生,这样可以减少晶粒的团聚,得到纯度高的纳米粉体。均相沉淀法常用的沉淀剂有六次甲基四胺和尿素等。石西昌等[21]人采用均匀沉淀法,在250mL平底三口瓶中加入一定浓度的Zn(NO3)2250mL、尿素50mL,待达到反应温度时,加入一定量表面活性剂,反应3-5h,得到前驱体,再将前驱体过滤、洗涤、蒸发、干燥,573-773K左右在马弗炉中焙烧3h,制备得到了平均粒径在40-60nm左右的纳米氧化锌。2.2.2固相配位化学法固相配位化学法在物质合成方面特别是利用固相配位化学反应合成金属簇合物和固相配合物等方面显示了极大的优势,是一种非常有前途的纳米粉体的制备方法。此方法首先在室温或低温下制备可在较低温度下分解的固相金属配合物,然后将固相产物在一定的温度下进行热分解,得到氧化物纳米粉体。此方法具有纯度高,工艺简单,可缩短制备时间等特点。王疆瑛等[23]人报道了用Zn(OAc)2·2H2O与8-羟基喹琳按1:2摩尔比混合均匀,室温(20±2)oC条件下研磨2h,反应体系的颜色逐渐由白色变为黄色。反应后的产物置于真空干燥器中自然干燥至恒重得8-羟基喹琳合锌。将固相产品在400oC下热分解2h,得到平均粒径为10nm的ZnO粉体。景苏等[24]人采用室温固相法,通过将FeCl3·6H2O和KOH以摩尔比1:3混合,于室温下研磨30min,然后用蒸馏水超声清洗,合成纳米FeOOH,将其在一定温度下焙烧一段时间就得到了纳米氧化铁粉体。徐宏等[25]人则通过将原料NaOH与FeCl2按一定的摩尔比于研钵中充分研磨,并加入适量的吐温80使湿固相反应充分。混合物经洗涤、抽滤后在室温下晾干即得纳米Fe3O4粉体。2.2.3水热法水热法是在高压釜里的高温、高压反应环境中,采用水作为反应介质,使反应物在水溶液或蒸汽等流体中反应生成目标产物,再经分离和热处理得到纳米粉体。反应温度一般在100-400oC,压力从0.1MPa到几十乃至几百MPa。水热法为各种前驱物的反应、结晶提供了一个常压条件无法得到的物理化学环境。粉体的形成经历了溶解-结晶的过程。该方法原料易得,成本相对较低,可以制备出纯度高、晶型好、分散性好以及大小可控的纳米颗粒,但是对设备的要求较为苛刻。现在在水热法的基础上,以有机溶剂(如苯、甲酸、乙醇等)代替水,采用溶剂热反应来制备纳米粉体是水热法的一种重大改进。另外近年来还发展出电化学水热法以及微波水热合成法。前者将水热法与电场相结合,而后者以微波加热水热反应体系。Ni等以氯化锌和氢氧化钾为原料,利用水热法合成了ZnO纳米管,一般大小为50nm×250nm,讨论了一些影响纳米管的形态和光学性能的因素。杨华等用水热法制备的纳米Fe3O4粒子饱和磁化强度达80emu/g。Chen等在氮气环境下将Fe(OMOE)2于MOE中回流4h,然后在磁搅拌下加入一定量MOE与H2O的混合溶液,得到的白色悬浮物在水热釜中反应得到了不同粒径的Fe3O4纳米颗粒。2.2.4溶胶-凝胶法溶胶-凝胶法指金属醇盐或无机盐水解成溶胶,然后使溶胶凝胶化,再将凝胶干燥煅烧后得到纳米粉体。溶胶-凝胶法反应具有条件温和、产品成分均匀、纯度较高、粒径分布较窄等特点,尤其可以制备传统方法所不能或难制备的产物,而且反应物种多,过程易控制,适于氧化物和过渡金属族化合物的制备。采用溶胶-凝胶法不仅可制备纳米颗粒,还可制备纳米薄膜和块体。但是也存在一些缺点,如原料成本较贵;制备周期较长;烧结性差,干燥收缩性大等。Vafaee等以三羟乙基胺为表面活性剂,采用溶胶-凝胶法合成了粒径为3-4nm的球形ZnO,与其他方法制得的纳米ZnO相比,具有更好的光致发光现象。Mondelaers等在醋酸盐-柠檬酸盐的溶胶中合成了纳米ZnO,具有窄分布的特点。Tang等在300oC以溶胶-凝胶方法合成了具有纳米结构的磁性Fe3O4薄膜,且薄膜表面均一无裂缝,所加磁场为0-1.9T时,表现出磁光效应。Xu等利用溶胶-凝胶法在真空退火的条件下合成磁性Fe3O4纳米粒子,磁性粒子的大小、饱和磁化强度以及矫顽力都随着合成温度的增加而增大,而且Fe3O4粒子的相态随着不同的反应温度和气氛而变化。2.2.5微乳液法微乳液法是近年来发展起来的一种制备纳米颗粒的有效方法。它是利用两种互不相溶的溶剂在表面活性剂的作用下形成一个均匀的乳液,从乳液中析出固相,这样可使成核、生长过程局限在一个微小的球形液滴内,从而可形成球形颗粒,又避免了颗粒之间的进一步团聚。微乳液法实验装置简单、能耗低、操作简单;所得的纳米粒子粒径分布窄,而且单分散性、界面性和稳定性好;与其他方法相比具有粒径易于控制,适用面广等优点。Singhai等以Zn-DEHSS为表面活性剂在乙醇-油微乳液体系中合成了纳米ZnO粉体,并将制得的纳米粉体用于变阻器上,找到一个最低临界电压。崔若梅等[34]人利用适当比例的非离子表面活性剂吐温80、环己烷、水自发生成W/O型微乳液制得了25-30nm的ZnO粉体。Arturo等在ATO-H2O-n-Heptance体系中,将含有0.15mol/L的FeCl2和0.3mol/LFeCl3的微乳液与含有NH4OH的微乳液混合,充分反应,产物离心分离后,用庚烷、丙酮洗涤并干燥得到粒径为4nm的Fe3O4纳米颗粒。Zhou等以环己胺作油相,NP-5和NP-9为表面活性剂相,FeSO4和Fe(NO3)3为水溶液组成O/W微乳体系,合成了粒径小于10nm的Fe3O4纳米粒子,具有很高的矫顽力。

351 评论

WZYHJM1021

1 引 言 磁性纳米粒子是近年来发展起来的一种新型材料,因其具有独特的磁学特性,如超顺磁性和高矫顽力,在生物分离和检测领域展现了广阔的应用前景[1]。同时,因磁性氧化铁纳米粒子具有小尺寸效应、良好的磁导向性、生物相容性、生物降解性和活性功能基团等特点[2~4], 在核磁共振成像、靶向药物、酶的固定、免疫测定等生物医学领域表现出潜在的应用前景[5~7]。但由于其较高的比表面积,强烈的聚集倾向,所以通常对其表面进行修饰,降低粒子的表面,能得到分散性好、多功能的磁性纳米粒子。对磁性纳米粒子的表面进行特定修饰,如果在修饰后的粒子上引入靶向剂、药物分子、抗体、荧光素等多种生物分子,可以改善其分散稳定性和生物相容性, 以实现特定的生物医学应用。此外,适当的表面修饰或表面功能化还可以调节磁性纳米粒子表面的反应活性[8],从而使其应用在细胞分离、蛋白质纯化、核酸分离和生物检测等领域。本文介绍了磁性氧化铁纳米粒子的制备方法, 比较了各种制备方法的优缺点,并对其在生物分离及检测中应用的最新进展进行了评述。2 磁性氧化铁纳米粒子的合成方法 磁性纳米粒子的制备是其应用的基础。目前已发展了多种合成和制备方法,如共沉淀法、水热合成法、溶胶凝胶法和微乳液法等,上述方法均可制备高分散、粒度分布均匀的纳米粒子,并能方便地对其表面进行化学修饰,这些方法的优点和缺点见表1。 在这些合成方法当中,共沉淀法是水相合成氧化铁纳米粒子最常用的方法。该方法制备的磁性纳米颗粒具有粒径小,分散均匀,高度生物相容性等优点,但制得的颗粒存在形状不规则,结晶差等缺点。通过在反应体系中加入柠檬酸,可得到形状规则、分散性好的纳米粒子。利用这种方法合成的磁性纳米材料被广泛应用在生物化学及生物医学等领域[9]。微乳液法制备纳米粒子,产物均匀、单分散,可长期保持稳定,通过控制胶束、结构、极性等,可望从分子规模来控制粒子的大小、结构、特异性等。微乳液合成的磁性纳米粒子仅溶于有机溶剂,其应用受到限制。通常需要在磁性纳米粒子的表面修饰上亲水分子,使其溶于水,从而能应用于生物、医学等领域。 热分解法是有机相合成氧化铁纳米粒子最多也是最稳定的方法。利用热分解法制备的纳米Fe3O4颗粒产物具有好的单分散性,且呈疏水性,可以长期稳定地分散于非极性有机溶剂中。该方法合成的氧化铁纳米粒子虽然具有粒径均一的特点,但必须在其表面偶联亲水性及生物相容性好的生物分子或制备成核壳结构,才可用于生物医学领域。表1 磁性氧化铁纳米粒子的制备方法(略)此外,绿色化学和生物方法合成氧化铁纳米粒子也备受关注[28,29]。磁性氧化铁纳米粒子除具有的表面效应、小尺寸效应、量子效应、宏观量子隧道效应等纳米粒子基本特性外,它同时还具有超顺磁特性、类酶催化特性和生物相容性等特殊性质,因此在医学和生物技术领域中的应用引起了人们的广泛兴趣。 3 磁性氧化铁纳米材料在生物分离与生物检测的应用3.1 磁性氧化铁纳米材料在生物分离的应用 磁性氧化铁纳米粒子可以通过外界磁场来控制纳米粒子的磁性能,从而达到分离的目的,如细胞分离[30,31]、蛋白分离[32] 和核酸分离[33]等。此外磁性氧化铁纳米粒子由于兼有纳米、磁学和类酶催化活性等性能,不仅能够实现被检测物的分离和富集,而且能够使检测信号放大,在生物分析领域也都具有很好的应用前景[34,35]。磁性纳米粒子(MNP)能够应用于这些领域主要基于它的表面化学修饰,包括非聚合物有机固定、聚合物有机固定、无机分子固定及靶向配体修饰等[36](图1)。纳米粒子表面功能化修饰是目前研究的热点。3.1.1 磁性氧化铁纳米材料在细胞分离方面的应用 细胞分离技术的目的是快速获得所需目标细胞。传统细胞分离技术主要根据细胞的大小、形态以及密度的差异进行分离,如采用微滤、超滤以及超离心等方法。这些方法操作简单,但是特异性差,而且存在纯度不高、制备量偏小、影响细胞活性等缺点,因此未能被广泛地用于细胞的纯化研究[37]。近年来,随着对磁性纳米粒子研究的深入,人们开始利用磁性纳米粒子来分离细胞[38,39]。如磁性氧化铁纳米粒子在其表面接上具有生物活性的吸附剂或配体(如抗体、荧光物质、外源凝结素等),利用它们与目标细胞的特异性结合,在外加磁场的作用下将细胞分离、分类以及对其种类、数量分布进行研究。张春明等[40]运用化学连接方法将单克隆抗体CD133连接到SiO2/Fe3O4复合粒子的表面得到免疫磁性Fe3O4纳米粒子,利用它分离出单核细胞和CD133细胞。经培养后可以看出,分离出来的CD133细胞与单核细胞一样,具有很好的活性,能够正常增殖形成集落,并且在整个分离过程中对细胞的形态以及活性没有明显的毒副作用,这与Kuhara等[30]]报道的采用磁分离技术分离CD19+和CD20+细胞的结果一致。Chatterjee等[39]采用外源凝结素分别修饰聚苯乙烯包被的磁性Fe3O4微球和白蛋白磁性微球,利用凝结素与红细胞良好的结合能力,快速、高效的分离了红细胞。此外,磁性粒子在分离癌细胞和正常细胞方面的动物实验也已获得成功。3.1.2 磁性氧化铁纳米材料在蛋白质和核酸分离中的应用 利用传统的生物学技术(如溶剂萃取技术等)来分离蛋白质和核酸程序非常繁杂,而磁分离技术是分离蛋白、核酸及其他生物分子便捷而有效的方法。目前在外磁场作用下,超顺磁性氧化铁纳米粒子已广泛应用于蛋白质和核酸的分离。 Liu等[41]利用聚乙烯醇等表面活性剂存在下制备出共聚磁性高分子微球,表面用乙二胺修饰后用于分离鼠腹水抗体,得到很好的分离效果。Xu等[42]在磁性氧化铁纳米粒子表面偶联多巴胺分子,用于多种蛋白质的分离纯化。多巴胺分子具有二齿烯二醇配体,它可以与氧化铁纳米粒子表面配位不饱和的Fe原子配位,形成纳米颗粒多巴胺复合物,此复合物可以进一步偶联次氨基三乙酸分子(NTA),NTA分子可特异螯合Ni+,对于具有6×His标签的蛋白质的分离纯化方面表现出很高的专一性。Liu等[43]用硅烷偶联剂(AEAPS)对核壳结构的SiO2/Fe2O3复合粒子的表面进行处理,研究复合磁性粒子对牛血清白蛋白(BSA)的吸附情况,结果表明BSA与磁性复合粒子之间是通过化学键作用被吸附的,复合粒子对BSA的最大吸附量达86 mg/g,显示出在白蛋白的分离和固定上有很大的应用潜力。Herdt等[44]利用羧基修饰的吸附/解离速度快的核壳型(Fe3O4/PAA)磁性纳米颗粒与Cu2+亚氨基二乙酸(IDA)共价交联,通过Cu2+与组氨酸较强的亲和能力实现了组氨酸标记蛋白的选择性分离,分离过程如图2所示。 磁性纳米粒子也是核酸分子分离的理想载体[45]。DNA/mRNA含有单一碱基错位,它们的富集和分离在人类疾病诊断学、基因表达研究方面有着至关重要的作用。Zhao等[46]合成了一种磁性纳米基因捕获器,用于富集、分离、检测痕量的DNA/mRNA分子。这种材料以磁性纳米粒子为核,包覆一层具有生物相容性的SiO2保护层,表面再偶联抗生素蛋白维生素H分子作为DNA分子的探针,可以将10-15 mol/L DNA/mRNA有效地富集,并能实时监控产物。Tayor等[47]用硅酸钠水解法、正硅酸乙酯水解法制备SiO2/Fe2O3磁性纳米粒子并对DNA进行了分离。结果表明,SiO2功能化的Fe2O3磁性纳米粒子对DNA的吸附分离效果明显好于单独Fe2O3磁性纳米粒子的分离效果,但是其吸附机理有待进一步研究。3.2 磁性氧化铁纳米材料在生物检测中的应用3.2.1 基于磁学性能的生物检测磁性氧化铁纳米粒子因其特有的磁导向性、小尺寸效应及其偶联基团的活性,兼有分离和富集地作用,使其在生物检测领域有广泛的应用。当检测目标为低含量的蛋白分子时,不能通过聚合酶链反应(PCR)对其信号进行放大,而磁微球与有机染料或量子点荧光微球结合可以对某些特异性蛋白、细胞因子、抗原和核酸等进行多元化检测,实现信号放大的作用。Yang等[48]采用一对分子探针分别连接荧光光学条码(彩色)和磁珠(棕色),对DNA(顶端镶板)和蛋白质(底截镶板)生物分子进行目标分析(图3)。如果目标DNA序列或蛋白存在,它将与两个磁珠结合一起,形成了一个三明治结构,经过磁选,光学条码可以在单磁珠识别目标水平下,通过分光光度计或是在流式细胞仪读出。通过此方法检测目标分子是基于数百万个荧光基团组成的微米尺寸光学条码信号的扩增而检测出来,其基因和蛋白的检出限可达到amol/L量级,甚至更低。 Nam等[49]利用多孔微粒法(每个微粒可填充大量条形码DNA)和金纳米微粒为基础的比色法生物条形码检测技术检测了人白细胞介素2(IL2),检出限可达到30 amol/L,比普通的酶联免疫分析技术的灵敏度高3个数量级。Oh等 [50]利用荧光为基础的生物条形码放大方法检测了前列腺特异性抗原(PSA)的水平,其检出限也低于300 amol/L,而且实现了快速检测。 在免疫检测中,磁性纳米粒子作为抗体的固相载体,粒子上的抗体与特性抗原结合,形成抗原抗体复合物,在磁力作用下,使特异性抗原与其它物质分离,克服了放免和酶联免疫测定方法的缺点。这种分离具有灵敏度高、检测速度快、特异性高、重复性好等优点。Yang等[51]通过反相微乳液法制备了粒径很小的SiO2包覆的Fe3O4磁性纳米粒子,生物分子通过诱导这些高单分散的磁性纳米粒子可用于酶的固定和免疫检测。Lange等[52]采用直接或三明治固相免疫法(生物素基化抗IgG抗体和共轭连接链霉素的磁性纳米粒子组成三明治结构)和超导量子干涉法(SQUID),研究它们在确定抗原、抗体相互作用免疫检测中的应用,结果表明特异性键合的磁性纳米颗粒的驰豫信号大小依赖于抗原(人免疫球蛋白G,IgG)的用量,这种磁弛豫(Magnetic relaxation)免疫检测方法得到的结果与广泛使用的ELISA方法的结果相当。 因磁性纳米粒子独特的性能,在生物传感器上也有潜在的应用前景。Fan等[53]在磁珠上偶联被检测物的一级抗体,在金纳米颗粒上连接二级抗体,两者反应后,利用HClNaClBr2将Au氧化为Au3+,催化发光胺(Luminol)化学发光,人免疫球蛋白G(IgG)的检出限可达2 × 10-10 mol/L ,实现了磁性纳米颗粒化学发光免疫结合的方法对IgG进行生物传感分析(图4)。3.2.2 类酶催化特性在生物检测中的应用 Cao等[54]发现Fe3O4磁性纳米粒子能够催化H2O2氧化3,3',5,5'四甲基联苯胺(TMB)、3,3'二氨基联苯胺四盐酸盐(DAB)和邻苯二胺(OPD),使其发生显色反应,具有类辣根过氧化物酶(HRP)活性(图5),而且其催化活性比相同浓度的辣根过氧化物酶高40倍。并且Fe3O4磁性纳米粒子可以运用磁分离手段进行重复性利用,显著降低了生物检测的实验成本,利用此特性可进行多种生物分子的检测。 利用葡萄糖氧化酶(GOx)与Fe3O4磁性纳米粒子催化葡萄糖的反应(见式(1)和(2)),通过比色法检测葡萄糖,其检测的灵敏度达到5×10-5 ~ 1×10-3 mol/L 。由于Fe3O4磁性纳米粒子制备简单、稳定性好、活性高,成本低,因而比普通酶更有竞争优势,这也为葡萄糖的检测提供了高灵敏度和选择性的分析方法,在生物传感领域的应用上展现了巨大的潜能,为糖尿病人疾病的诊断提供了快速、灵敏的检测方法。然而要提高检测灵敏度,合成催化效率高的Fe3O4磁性纳米粒子及多功能磁性纳米粒子是关键。Peng等[56]用电化学方法比较了不同尺寸Fe3O4纳米粒子的催化活性发现,随着尺寸的变小,磁性纳米粒子的催化活性变高。Wang等[57]制备的单分散哑铃型PtFe3O4纳米粒子,由于本身尺寸和结构特点,可更大限度地提高催化活性。本研究组已经合成了分散性好和磁性高的氧化铁纳米粒子并对其进行了表征,利用其磁学和催化特性,已开展了葡萄糖等生物分子的检测,该方法的检出限达到1 μmol/L,具有灵敏度高、操作简便和成本低等优点[58]。总之,Fe3O4磁性氧化铁纳米粒子不但具有显著的超顺磁性,而且具有类辣根过氧化物酶催化特性,可通过使用过氧化物敏感染料,设计了一系列(如乙肝病毒表面抗原等)的免疫检测模型[59],因此超顺磁性纳米粒子在生物分离和免疫检测领域具有广阔的应用前景。4 结 语 随着纳米技术的迅速发展,磁性氧化铁纳米粒子的开发及其在生物医学、生物分析、生物检测等领域的潜在应用已经越来越受到重视,但同时也面临很多挑战和问题。(1)构建并制备尺寸小、粒径均一、分散性和生物相容性好及催化性能高的多功能磁性纳米粒子;(2)根据被检测生物分子的特点设计多功能磁性氧化铁纳米粒子,实现高灵敏度、特异性检测;(3)利用纳米氧化铁颗粒作为分子探针进行实时、在线、原位、活体和细胞内生物分子的检测。这些问题不仅是纳米材料在生物分子检测领域应用需要解决的难点,也是目前其进行生物分子检测研究的热点和重点。【参考文献】 1 Perez J M, Simeone F J, Saeki, Y, Josephson L, Weissleder R. J. Am. Chem. Soc., 2003, 125(34): 10192~101932 Kim G J, O'Regan R M, Nie S M. 2005 27th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2005,17:714~7163 LIU JunTao(刘军涛), LIU RuPing(刘儒平), WANG MiXia(王蜜霞), LIU ChunXiu(刘春秀), LUO JinPing(罗金平), CAI XinXia(蔡新霞). Chinese J. Anal. Chem.(分析化学), 2009, 37(7): 985~9884 Lang C, Schuler D, Faivre D. Macromol. Biosci., 2007, 7(2): 144~1515 Silva G A. Surg. Neurol., 2007, 67(2):113~1166 Corot C, Robert P, Idee J M, Port M. Adv. Drug Delivery. Rev., 2006, 58(14): 1471~15047 Kohler N, Sun C, Wang J, Zhang M Q. Langmuir., 2005, 21(19), 8858~88648 LI BaoYu(李宝玉). Biomedical Nanomaterials(纳米生物医药材料). Beijing(北京): Chemical Industry Press(化学工业出版社), 2004: 1419 Tartaj P, Morales M P, GonzalezCarreno T, VeintemillasVerdaguer S, Serna C J. J. Magn. Magn. Mater., 2005, 290: 28~3410 ZHANG Xin(张 鑫), LI XinGang(李鑫钢), JIANG Bin(姜 斌). Chinese Chem. Industry. Eng.(化学工业与工程), 2006, 23(1): 45~4811 Wu J H, Ko S P, Liu H L, Jung M H, Lee J H, Ju J S, Kim Y K. Colloids Surf. A, 2008, 313/314: 268~27212 CHENG HaiBin(程海斌), LIU GuiZhen(刘桂珍), LI LiChun(李立春), GUAN JianGuo(官建国), Yuan RunZhang(袁润章). J. Wuhan University of Technology(武汉理工大学学报), 2003, 25(5): 4~613 QIU XingPing(邱星屏). J. Xiamen University: Natural Science(厦门大学学报:自然科学版), 1999, 38(5): 711~71514 Mao B D, Kang Z H, Wang E B, Lian S Y, Gao L, Tian C G, Wang C L. Mater. Res. Bull., 2006, 41(12): 2226~223115 Fan R, Chen X H, Gui Z, Liu L, Chen Z Y. Mater. Res. Bull., 2001, 36(3~4): 497~50216 Wang H W, Lin H C, Yeh Y C, Kuo C H. J. Magn. Magn. Mater., 2007, 310(2): 2425~242717 Harris L A, Goff J D, Carmichael A Y, Riffle J S, Harburn J J, St Pierre T G, Saunders M. Chem. Mater., 2003, 15(6):1367~137718 SONG LiXian(宋丽贤), LU ZhongYuan(卢忠远), LIAO QiLong(廖其龙). J. Funct. Mater.(功能材料), 2005, 36(11): 1762~176819 Itoh H, Sugimoto T. J. Colloid. Interface. Sci., 2003, 265(2): 283~29520 Xu J, Yang H B, Fu W Y, Du K, Sui Y M, Chen J J, Zeng Y, Li M H, Zou G. J. Magn. Magn. Mater., 2007, 309(2): 307~31121 Li Z, Wei L, Gao M Y, Lei H. Adv. Mater., 2005, 17(8): 11301~11305 22 Sun S H, Zeng H. J. Am. Chem. Soc., 2002, 124(28): 8204~820523 Bang J H, Suslick K S. J. Am. Chem. Soc. 2007, 129(8): 224224 Vijayakumar R, Koltypin Y, Felner I, Gedanken A. Mater. Sci. Eng. A, 2000, 286(1): 101~10525 Pinkas J, Reichlova V, Zboril R, Moravec Z, Bezdicka P, Matejkova J. Ultrason. Sonochem., 2008, 15(3): 257~26426 Khollam Y B, Dhage S R, Potdar H S, Deshpande S B, Bakare P P, Kulkarni S D, Date S K. Mater. Lett., 2002, 56(4): 571~57727 HAI YanBing(海岩冰), YUAN HongYan(袁红雁), XIAO Dan(肖 丹). Chinese Chem. Res. Appl.(化学研究与应用), 2006, 18(6): 744~74628 Jun Y W, Huh Y. M, Choi J S, Lee J H, Song H T, Kim S, Yoon, S, Kim K S, Shin J S, Suh J S, Cheon J. J. Am. Chem. Soc., 2005, 127(16), 5732~573329 Bharde A A, Parikh R Y, Baidakova M, Jouen S, Hannoyer B, Enoki T, Prasad B L V, Shouche Y S, Ogale S, Sastry M. Langmuir, 2008, 24(11): 5787~579430 Kuhara M, Takeyama H, Tanaka T, Matsunaga T. Anal. Chem., 2004, 76(21): 6207~621331 Y, G. Biofuctionalization of Nanamaterials. WileyVCH: Weinheim 200532 Safarik I M S. Biomagn. Res. Technol., 2004, 2(1): 7

273 评论

相关问答

  • 离子注入制备纳米晶研究进展论文

    几年来,我们看到了我们伟大的祖国的科技事业的迅猛发展,这让我为我是个中国人而感到无比的自豪。记得很久以前,手机的用途几乎只有一个,那就是打电话,可是前几年,手机

    流沙沙沙沙沙 6人参与回答 2023-12-10
  • 板蓝根颗粒剂的制备研究论文

    如何评价中药板蓝根冲剂?板蓝根有哪些功效?板蓝根能提高免疫力的...回答时间: 2019年10月08日最佳答案:事实上,中药药理试验表明,板蓝根在体外确实有比

    shenli83浪漫满屋 3人参与回答 2023-12-07
  • 研究纳米材料制备方法的论文

    纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我

    曼特宁先森 2人参与回答 2023-12-05
  • 颗粒制备工艺研究是论文还是设计

    药学类开题报告的范文 药学类的开题报告该怎样写才显得专业性强一点呢?这里专业模板可以帮到各位同学。 药学类开题报告范文篇一 药学专业毕业论文开题报告 南京中医药

    暖暖烛光2016 2人参与回答 2023-12-06
  • 纳米银粒子奇异性质研究论文

    纳米技术就像毫米、微米一样,纳米是一个尺度概念,是一米的十亿分之一,并没有物理内涵。当物质到纳米尺度以后,大约是在1~100纳米这个范围空间,物质的性能就会发生

    木鱼199210 2人参与回答 2023-12-12