布丁无敌
论文名称:Rich feature hierarchies for accurate object detection and semantic segmentation 提出时间:2014年 论文地址: 针对问题: 从Alexnet提出后,作者等人思考如何利用卷积网络来完成检测任务,即输入一张图,实现图上目标的定位(目标在哪)和分类(目标是什么)两个目标,并最终完成了RCNN网络模型。 创新点: RCNN提出时,检测网络的执行思路还是脱胎于分类网络。也就是深度学习部分仅完成输入图像块的分类工作。那么对检测任务来说如何完成目标的定位呢,作者采用的是Selective Search候选区域提取算法,来获得当前输入图上可能包含目标的不同图像块,再将图像块裁剪到固定的尺寸输入CNN网络来进行当前图像块类别的判断。 参考博客: 。 论文题目:OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks 提出时间:2014年 论文地址: 针对问题: 该论文讨论了,CNN提取到的特征能够同时用于定位和分类两个任务。也就是在CNN提取到特征以后,在网络后端组织两组卷积或全连接层,一组用于实现定位,输出当前图像上目标的最小外接矩形框坐标,一组用于分类,输出当前图像上目标的类别信息。也是以此为起点,检测网络出现基础主干网络(backbone)+分类头或回归头(定位头)的网络设计模式雏形。 创新点: 在这篇论文中还有两个比较有意思的点,一是作者认为全连接层其实质实现的操作和1x1的卷积是类似的,而且用1x1的卷积核还可以避免FC对输入特征尺寸的限制,那用1x1卷积来替换FC层,是否可行呢?作者在测试时通过将全连接层替换为1x1卷积核证明是可行的;二是提出了offset max-pooling,也就是对池化层输入特征不能整除的情况,通过进行滑动池化并将不同的池化层传递给后续网络层来提高效果。另外作者在论文里提到他的用法是先基于主干网络+分类头训练,然后切换分类头为回归头,再训练回归头的参数,最终完成整个网络的训练。图像的输入作者采用的是直接在输入图上利用卷积核划窗。然后在指定的每个网络层上回归目标的尺度和空间位置。 参考博客: 论文题目:Scalable Object Detection using Deep Neural Networks 提出时间:2014年 论文地址: 针对问题: 既然CNN网络提取的特征可以直接用于检测任务(定位+分类),作者就尝试将目标框(可能包含目标的最小外包矩形框)提取任务放到CNN中进行。也就是直接通过网络完成输入图像上目标的定位工作。 创新点: 本文作者通过将物体检测问题定义为输出多个bounding box的回归问题. 同时每个bounding box会输出关于是否包含目标物体的置信度, 使得模型更加紧凑和高效。先通过聚类获得图像中可能有目标的位置聚类中心,(800个anchor box)然后学习预测不考虑目标类别的二分类网络,背景or前景。用到了多尺度下的检测。 参考博客: 论文题目:DeepBox: Learning Objectness with Convolutional Networks 提出时间:2015年ICCV 论文地址: 主要针对的问题: 本文完成的工作与第三篇类似,都是对目标框提取算法的优化方案,区别是本文首先采用自底而上的方案来提取图像上的疑似目标框,然后再利用CNN网络提取特征对目标框进行是否为前景区域的排序;而第三篇为直接利用CNN网络来回归图像上可能的目标位置。创新点: 本文作者想通过CNN学习输入图像的特征,从而实现对输入网络目标框是否为真实目标的情况进行计算,量化每个输入框的包含目标的可能性值。 参考博客: 论文题目:AttentionNet: AggregatingWeak Directions for Accurate Object Detection 提出时间:2015年ICCV 论文地址: 主要针对的问题: 对检测网络的实现方案进行思考,之前的执行策略是,先确定输入图像中可能包含目标位置的矩形框,再对每个矩形框进行分类和回归从而确定目标的准确位置,参考RCNN。那么能否直接利用回归的思路从图像的四个角点,逐渐得到目标的最小外接矩形框和类别呢? 创新点: 通过从图像的四个角点,逐步迭代的方式,每次计算一个缩小的方向,并缩小指定的距离来使得逐渐逼近目标。作者还提出了针对多目标情况的处理方式。 参考博客: 论文题目:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 提出时间:2014年 论文地址: 针对问题: 如RCNN会将输入的目标图像块处理到同一尺寸再输入进CNN网络,在处理过程中就造成了图像块信息的损失。在实际的场景中,输入网络的目标尺寸很难统一,而网络最后的全连接层又要求输入的特征信息为统一维度的向量。作者就尝试进行不同尺寸CNN网络提取到的特征维度进行统一。创新点: 作者提出的SPPnet中,通过使用特征金字塔池化来使得最后的卷积层输出结果可以统一到全连接层需要的尺寸,在训练的时候,池化的操作还是通过滑动窗口完成的,池化的核宽高及步长通过当前层的特征图的宽高计算得到。原论文中的特征金字塔池化操作图示如下。 参考博客 : 论文题目:Object detection via a multi-region & semantic segmentation-aware CNN model 提出时间:2015年 论文地址: 针对问题: 既然第三篇论文multibox算法提出了可以用CNN来实现输入图像中待检测目标的定位,本文作者就尝试增加一些训练时的方法技巧来提高CNN网络最终的定位精度。创新点: 作者通过对输入网络的region进行一定的处理(通过数据增强,使得网络利用目标周围的上下文信息得到更精准的目标框)来增加网络对目标回归框的精度。具体的处理方式包括:扩大输入目标的标签包围框、取输入目标的标签中包围框的一部分等并对不同区域分别回归位置,使得网络对目标的边界更加敏感。这种操作丰富了输入目标的多样性,从而提高了回归框的精度。 参考博客 : 论文题目:Fast-RCNN 提出时间:2015年 论文地址: 针对问题: RCNN中的CNN每输入一个图像块就要执行一次前向计算,这显然是非常耗时的,那么如何优化这部分呢? 创新点: 作者参考了SPPNet(第六篇论文),在网络中实现了ROIpooling来使得输入的图像块不用裁剪到统一尺寸,从而避免了输入的信息丢失。其次是将整张图输入网络得到特征图,再将原图上用Selective Search算法得到的目标框映射到特征图上,避免了特征的重复提取。 参考博客 : 论文题目:DeepProposal: Hunting Objects by Cascading Deep Convolutional Layers 提出时间:2015年 论文地址: 主要针对的问题: 本文的作者观察到CNN可以提取到很棒的对输入图像进行表征的论文,作者尝试通过实验来对CNN网络不同层所产生的特征的作用和情况进行讨论和解析。 创新点: 作者在不同的激活层上以滑动窗口的方式生成了假设,并表明最终的卷积层可以以较高的查全率找到感兴趣的对象,但是由于特征图的粗糙性,定位性很差。相反,网络的第一层可以更好地定位感兴趣的对象,但召回率降低。 论文题目:Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 提出时间:2015年NIPS 论文地址: 主要针对的问题: 由multibox(第三篇)和DeepBox(第四篇)等论文,我们知道,用CNN可以生成目标待检测框,并判定当前框为目标的概率,那能否将该模型整合到目标检测的模型中,从而实现真正输入端为图像,输出为最终检测结果的,全部依赖CNN完成的检测系统呢? 创新点: 将当前输入图目标框提取整合到了检测网络中,依赖一个小的目标框提取网络RPN来替代Selective Search算法,从而实现真正的端到端检测算法。 参考博客 :
长虹饮练
姓名:袁卓成;学号:20021210612; 学院:电子工程学院 转自 【嵌牛导读】 本文介绍了各类多目标优化算法 【嵌牛鼻子】 多目标优化, pareto 【嵌牛提问】 多目标优化算法有哪些? 【嵌牛正文】 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 使多个目标在给定区域同时尽可能最佳,多目标优化的解通常是一组均衡解(即一组由众多 Pareto最优解组成的最优解集合 ,集合中的各个元素称为 Pareto最优解或非劣最优解)。 ①非劣解——多目标优化问题并不存在一个最优解,所有可能的解都称为非劣解,也称为Pareto解。 ②Pareto最优解——无法在改进任何目标函数的同时不削弱至少一个其他目标函数。这种解称作非支配解或Pareto最优解。 多目标优化问题不存在唯一的全局最优解 ,过多的非劣解是无法直接应用的 ,所以在求解时就是要寻找一个最终解。 (1)求最终解主要有三类方法: 一是求非劣解的生成法,即先求出大量的非劣解,构成非劣解的一个子集,然后按照决策者的意图找出最终解;(生成法主要有加权法﹑约束法﹑加权法和约束法结合的混合法以及多目标遗传算法) 二为交互法,不先求出很多的非劣解,而是通过分析者与决策者对话的方式,逐步求出最终解; 三是事先要求决策者提供目标之间的相对重要程度,算法以此为依据,将多目标问题转化为单目标问题进行求解。 (2)多目标优化算法归结起来有传统优化算法和智能优化算法两大类。 传统优化算法包括加权法、约束法和线性规划法等,实质上就是将多目标函数转化为单目标函数,通过采用单目标优化的方法达到对多目标函数的求解。 智能优化算法包括进化算法(Evolutionary Algorithm, 简称EA)、粒子群算法(Particle Swarm Optimization, PSO)等。 两者的区别——传统优化技术一般每次能得到Pareo解集中的一个,而用智能算法来求解,可以得到更多的Pareto解,这些解构成了一个最优解集,称为Pareto最优解(任一个目标函数值的提高都必须以牺牲其他目标函数值为代价的解集)。 ①MOEA通过对种群 X ( t)执行选择、交叉和变异等操作产生下一代种群 X ( t + 1) ; ②在每一代进化过程中 ,首先将种群 X ( t)中的所有非劣解个体都复制到外部集 A ( t)中; ③然后运用小生境截断算子剔除A ( t)中的劣解和一些距离较近的非劣解个体 ,以得到个体分布更为均匀的下一代外部集 A ( t + 1) ; ④并且按照概率 pe从 A ( t + 1)中选择一定数量的优秀个体进入下代种群; ⑤在进化结束时 ,将外部集中的非劣解个体作为最优解输出。NSGA一II算法的基本思想: (1)首先,随机产生规模为N的初始种群,非支配排序后通过遗传算法的选择、交叉、变异三个基本操作得到第一代子代种群; (2)其次,从第二代开始,将父代种群与子代种群合并,进行快速非支配排序,同时对每个非支配层中的个体进行拥挤度计算,根据非支配关系以及个体的拥挤度选取合适的个体组成新的父代种群; (3)最后,通过遗传算法的基本操作产生新的子代种群:依此类推,直到满足程序结束的条件。 非支配排序算法: 考虑一个目标函数个数为K(K>1)、规模大小为N的种群,通过非支配排序算法可以对该种群进行分层,具体的步骤如下:通过上述步骤得到的非支配个体集是种群的第一级非支配层; 然后,忽略这些标记的非支配个体,再遵循步骤(1)一(4),就会得到第二级非支配层; 依此类推,直到整个种群被分类。拥挤度 ——指种群中给定个体的周围个体的密度,直观上可表示为个体。 拥挤度比较算子: 设想这么一个场景:一群鸟进行觅食,而远处有一片玉米地,所有的鸟都不知道玉米地到底在哪里,但是它们知道自己当前的位置距离玉米地有多远。那么找到玉米地的最佳策略,也是最简单有效的策略就是是搜寻目前距离玉米地最近的鸟群的周围区域。 基本粒子群算法: 粒子群由 n个粒子组成 ,每个粒子的位置 xi 代表优化问题在 D维搜索空间中潜在的解; 粒子在搜索空间中以一定的速度飞行 , 这个速度根据它本身的飞行经验和同伴的飞行经验来动态调整下一步飞行方向和距离; 所有的粒子都有一个被目标函数决定的适应值(可以将其理解为距离“玉米地”的距离) , 并且知道自己到目前为止发现的最好位置 (个体极值 pi )和当前的位置 ( xi ) 。 粒子群算法的数学描述 : 每个粒子 i包含为一个 D维的位置向量 xi = ( xi1, xi2, …, xiD )和速度向量 vi = ( vi1, vi2,…, viD ) ,粒子 i搜索解空间时 ,保存其搜索到的最优经历位置pi = ( pi1, pi2, …, piD ) 。在每次迭代开始时 ,粒子根据自身惯性和经验及群体最优经历位置 pg = ( pg1, pg2, …, pgD )来调整自己的速度向量以调整自身位置。 粒子群算法基本思想: (1)初始化种群后 ,种群的大小记为 N。基于适应度支配的思想 ,将种群划分成两个子群 ,一个称为非支配子集 A,另一个称为支配子集 B ,两个子集的基数分别为 n1、n2 。 (2)外部精英集用来存放每代产生的非劣解子集 A,每次迭代过程只对 B 中的粒子进行速度和位置的更新 ; (3)并对更新后的 B 中的粒子基于适应度支配思想与 A中的粒子进行比较 ,若 xi ∈B , ϖ xj ∈A,使得 xi 支配 xj,则删除 xj,使 xi 加入 A 更新外部精英集 ;且精英集的规模要利用一些技术维持在一个上限范围内 ,如密度评估技术、分散度技术等。 (4)最后 ,算法终止的准则可以是最大迭代次数 Tmax、计算精度ε或最优解的最大凝滞步数 Δt等。
计算机毕业论文 时间稍纵即逝,充满意义的大学生活即将结束,毕业生要通过最后的毕业论文,毕业论文是一种有准备、有计划、比较正规的、比较重要的检验大学学习成果的形式
《建筑工程招标投标中存在问题成因分析》 改革开放二十多年以来,建筑市场工程承发包从政府建设行政主管部门指令性计划分配任务,到施工企业自己上市场揽取业务,再发展到
好的,只要编程的吗。
本科毕业论文率要求: 1、查重率≦30%,毕业论文合格,可以申请毕业论文答辩; 2、查重率﹤10%,可以申请评定校级优秀论文; 3、查重率﹤15%,可以申请评定
中国法律儒家化述评 儒家思想是起源于春秋战国时期的一种思想,它虽然在秦朝时期受到过严酷的打压,但自从汉武帝“罢黜百家,读尊儒术”之后,它就成为了贯穿封建社会