龙龙fighting
小学数学活动课的开设原则与形式把活动课提高到课程设置的高度来认识与安排,这是国家教委颁发的义务教育阶段的《课程方案》中关于 课程设置的重要改革内容之一,《课程方案》明确指出:“活动在实施与发展教育中同学科相辅相成。”这就 从教学法规的高度明确了活动课同学科课同等重要。如何做到“相辅相成”?我想以小学数学活动课的开设原 则与形式为例,谈谈个人的看法,希望能与同行们共同探讨。 一、小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学爱好者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、兴趣爱好提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好其它学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四 小学数学活动课,必须突出具体形象思维,给学生以能力的钥匙,不给知识的包袱,促进具体 形象思维向抽象逻辑思维的过渡。小学生的思维,在四年级之前,是以认识“具体实例”、“直观特征”为标 志的具体形象思维为主;在四年级之后,则向掌握“主要属性”、“种属关系”、“实际功用”为标志的抽象 逻辑思维过渡,不过这种抽象逻辑思维还是以具体形象为支柱。作为小学阶段思维训练的一门主课,小学数学 的学科课和活动课,责无旁贷地要促使小学生思维从具体形象思维向抽象逻辑思维过渡。为了实现这种过渡, 可采取下列措施:①提供充足的有趣的数和形的具体形象材料,让学生拓广知识,扩大眼界。怎样选择这些材 料?荷兰数学教育家凡·希勒(Van Hiele )认为:人类认识数和形有五级水平,小学四年级以前学生,应选 择认识“形象级水平”的材料,就是学生通过图形和数的整体形象,而不是通过性质去认识数和形。四年级之 后的学生,可选择“性质级水平”的材料,即通过图形和数的性质去认识数和形。至于后三种水平材料的认识 ,则是中学以后的事情了。这种认识可作为小学数学活动课选择充足有趣具体形象材料的依据。②通过设悬念 ,设问题情境,积极启发小学生从已知到未知,促使从具体形象思维到抽象逻辑思维的转换,同时让学生在解 决具体问题中体会到成功的乐趣,以及让学生掌握不完全归纳法之类的数学方法。这里特别要强调的是:在活 动课的思维材料的选择上,一要“不超纲”,即所涉及知识不应超出小学数学教学大纲之外;二要“不超前” ,即活动课的教学进度与学科课的教学进度基本保持一致,知识与能力训练尽量做到前后配合。在活动课中教 师的主导作用就表现为要当学生智慧的启迪者,不要当真理的恩赐者,更不能藉活动课之机,把学生当成“仓 库”,拼命向学生灌输他们不愿接受的成人化数学知识,从而使学生受压,感到不耐烦。否则,数学活动课就 不能促使学生个性要素的发展,增长才能的数学目的就会落空。二、小学数学活动课的开设形式 1.数学游戏。 数学游戏是对四年级以前学生进行活动课教学的一种好形式。好的数学游戏应能充分激发学生的好奇心理 ,凝聚学生的注意力,发挥学生的想象力。应是在轻松愉快的气氛中,学习兴趣与数学知识自然而然地同步增 长。为此,设计数学游戏的思路,应当考虑以下几个方面:①游戏内容要通过丰富而新颖的形象来包装。大家 都知道,一切知识都是从感知开始的。然而,数学教师惯用的数学概念形象化方法,虽然最初的数学概念能从 形象化入手,但最后总下降为单调而呆板的数学概念和“符号”,成人化的思维痕迹很深,这种教法特别不能 激发低年级小学生的兴趣,我们教育中应当尽量避免。正确的数学概念的形象化包装,必须结合低年级小学生 思维在具体形象方面占优势的认识特点,结合他们的实际生活爱好来制定关于数学概念的教学形象设计,要不 显露抽象的数学概念和“符号”,而是把它化解在小学生喜闻乐见的丰富而新颖的游戏之中,从而起到充分调 动小学生的感官,在小学生头脑中树起鲜明的形象,达到调动学生的学习积极性的最佳效果。②游戏展开要通 过生动活泼的戏剧性活动来实现。低年级小学生,刚由家庭进入社会,一切都新鲜,好动和不满足是他们进步 的第一要素。数学活动课教学要抓住这一特点,设计适合他们口味的戏剧化数学游戏,把学生引入求知的好动 中,让他们全身心地投入到学习中去。通过戏剧化处理这座在具体与抽象间的桥梁,把学生从具体形象思维引 到抽象思维,让学生自己思考,自己理解,自己消化,自己吸收,使思维永远处于兴奋之中,实现活动课的目 的。③游戏结构要是美的结构形式。数学游戏美的结构,是指美的语言、美的教学态度、美的板书设计及教具 运用。最能直接打动低年级小学生心灵的是美,因此美的教学结构形式,是一股推动低年级小学生接受教育的 力量,数学活动课的游戏结构也应按此来设计。 2.数学讲座。 小学四年级后开展数学讲座,这是有利于抽象逻辑思维的发展,也是有利健康品德形成的好形式。这种以 数学讲座为内容的数学活动课取材于两方面:一方面是取材于学科知识的扩张,发展学生能力。这类教学内容 可分为三种类型:①智力型,如找规律填数,奇数和偶数运用,巧妙计算等;②实用型,如利用图形的合理分 类的计算题,金融投资的基本计算知识等;③动手型,如绘制图表,用图形解应用题等。另一方面是取材于数 学名人的故事,取材于数学史上的典型成果。通过讲述这些故事,能对学生进行爱国主义教育,进行朴素的辩 证唯物主义教育,从而帮助学生确立正确的学习目的,养成良好的学习习惯,激发他们学习的兴趣。.数学实践。 小学四年级后的数学活动课可开展数学实践活动,这是拓宽学生视野的又一种好形式。如去银行了解什么 是年息?年息为什么采用“%”的记号?什么是月息?月息为什么采用“‰”的记号?也可到市场去了解怎样 用统计表处理变化的市场价格?怎样利用已学过的图形拼成优美的商标图案等等。诸如此类的实践活动,不仅 会丰富学生的知识,而且能使学生知道数学在实际生活中有广阔的应用,更重要的是通过社会实践这一大课堂 的锤炼,锻炼学生的能力,培养学生勇于解决实际问题的坚强个性。 4.数学墙报。 这是继数学实践之后,学生自己找问题自己解决问题的活动课的好形式。这种活动的开展,不但能丰富学 生的数学知识,而且会提高学生写作能力、组织能力以及美的欣赏能力,宜在小学高年级的学生中广泛开展。
金凯瑞砖家
数学论文1、小学数学论文的组成 小学数学论文具有类型多样、形式活泼等特点,有的侧重于经验的总结,实验结果的阐述,包括实验过程、手段、方法和结果的记录;有的侧重于理论性的研究,包括对研究课题的提出,对研究成果的分析、推导、论证和应用等。但不论哪类论文,主要由标题、摘要、前言、正文、结论、参考文献等部分组成。 标题就是论文的总题目,是文章基本内容的缩影,古人云:“立片言以居要,乃全篇之警策。”所以拟定标题应该力求简短、明确、质朴、醒目,既要防止太冗长,又要避免太概括,使人不明了;既要防止文不对题或过于陈旧,又要避免追求新颖、空泛而没有实际的内容。 摘要一般包括本课题研究的意义,研究的内容与方法,研究的成果或价值等,便于读者迅速了解全文的概貌。所以摘要应简明扼要,引人入胜,内容全面,重点突出,且能独立使用。 前言也称引言或绪言,一般包括本课题研究的背景或起点,需要研究的问题,研究的方法、手段,研究的意义或价值。需要注意的是,对研究的意义或价值应力求实事求是,既不可拔高,也不可贬低或过分谦虚。 正文是论文的主体,作为表达作者个人研究成果的部分,所占篇幅较大,有时还必须辅以必要的小标题,应力求概念清晰,论点明确,论证严密,论据充分,具有科学性、准确性和创新性,同时条理要清楚,文字应通俗简明。 结论是对正文中所分析论证的问题加以综合,概括出基本点,这是课题解决的答案。结论作为理论分析和实验的逻辑发展,是论述的概括集中和升华,由局部到一般,由具体事实、经验,上升到理论概括,是整篇论文的归宿,所以应力求完整、准确、鲜明,还应如实指出本理论的使用范围和成果的意义,以及本文尚未解决的问题和继续研究的方向。 参考文献是反映作者严肃的科学态度和研究工作的依据,其中包括撰写该论文所参考的书籍(作者姓名、书名、版次、页数、出版者、出版年份)或期刊(作者姓名、标题、刊物名称、卷或期、页数、年份)。 2、小学数学论文的撰写过程 第一步,选题、选材。 要想写什么内容的文章,无论是理论探讨方面,还是教材教法方面和解题方法技巧方面,以及教学经验总结方面,对阐述问题的深度、广度等,要心中有数,具有明确的目的性和主题性。 无论选择哪方面的内容与具体题材,都必须力求具有先进性、针对性和实践性,要想做到这一点,首先,根据文献检索方法,尽可能多地查阅资料,掌握国内外最新研究动态。其次,深入钻研这些文献资料,看看能否得到进一步启发,有无新的见解。尽管选题可能重复,类似的题材较多,但也可以从不同侧面结合不同实例,根据不同对象写出一定的新意来,使观点更明确,方法更有效,使其先进性、针对性、实用性更强。第三,选题要从实际出发,题目大小、题材的深度和广度要恰当。 第二步,拟纲、执笔。 论文选题确定后,就要注意写好提纲,这是写好文章的基础。首先,要将内容、结构布局好,要拟定一个写作提纲,准备分几个部分,各个部分集中讲几个问题,这些部分与问题之间的关系如何,都需要进一步精心设计,使其结构严谨、层次分明,具有科学性、逻辑性。其次,要注意各种文章的特点。写理论性的文章,最好能再确定大小标题,叙述上力求论点明确,可信度强,便于别人借鉴;写教材分析方面的文章,应进行比较,提出改进意见或提示值得深入研究的问题等。 第三步,修改、定稿。 修改是文章初稿完成后的一个加工过程,它包括对论文文字的修饰,以及科学性的推敲等。论文初稿形成后,应从头至尾反复地阅读,逐句逐段推敲,审核一下文中的论点是否明确,论据是否充分,论证是否合理,结构是否严谨,计算是否正确等。一篇好的小学数学论文,应该是数文并茂。就是说,既要有好的数学内容,又要有好的文字表达。所以,文字的工夫对数学论文来说很为重要。数学论文,贵在朴实,少用浮词,免得冲淡文章的中心,文字应通俗易懂,简明扼要,用词应准确简炼,表达完整,特别是中心内容一定要阐述透彻清楚。此外,书写要规范,题号、图号、标点也要正确。修改是一项细致的工作,只有对文稿反复推敲、修改,才能消除不应有的错误。只有经过反复修改加工,文章的质量才会不断提高
远离的兔子
我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍、大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。
平凡yifen
我国思维科学的开拓者钱学森先生认为,人类思维可以分为三种:抽象(逻辑)思维、形象直感思维和灵 感(顿悟)思维。并建议把形象思维作为思维科学研究的突破口。什么是形象思维呢?所谓形象思维就是运用 头脑中积累起来的表象进行的思维。表象是我们以前知觉过的,而在头脑中再现的那些对象现象的映象。形象 思维具有间接性和概括性的特点。形象思维同抽象思维一样,是认识的高级形式——理性认识。 为什么要培养学生的形象思维能力呢?按照现代科学研究的最新成果,人的大脑左右两半球各有不同功能 ,左半球是语言中枢,主管语言和抽象思维,右半球主管音乐,绘画等形象思维材料的综合活动。两者相互配 合,相辅相成,相互促进,才能使个体得到和谐发展。 从儿童思维特点来看:小学生的思维是从具体形象思维为主要形式逐步向抽象逻辑思维过渡,但这时的逻 辑思维是初步的,且在很大程度上仍具有具体形象性。因此,培养学生的形象思维能力,既是儿童本身的需要 ,又是他们学习抽象数学知识的需要。 那么在小学数学教学中,如何培养学生的形象思维能力呢? 一、充分感知,丰富表象,为培养形象思维积累材料 儿童能够敏锐感知鲜明的、富有色彩、色调和声音的形象,善于用形象色彩和声音触发思维。表象是形象 思维的细胞,形象思维要依靠表象来进行思维,要发展学生的形象思维,必须打好基础,丰富表象材料的积累 。 1.动手操作,丰富表象 动手操作,使学生各种感官都参与到学习中来,从多方面,多角度观察事物。例如:教学余数概念,先让 学生动手分小棒:(1)9根小棒每2根为一份,可以分几份,还剩几根?(2)13根小棒,平均分给5 个人,每 个同学可以分几根,还剩几根?操作完毕,引导学生用语言表达操作过程,说说是怎样分小棒的,从而形成表 象,然后再让学生闭上眼睛,想想下面题目应该怎样分?①有7块饼干,每人分3块,可以分给几个人,还剩几 块?②有12支铅笔,平均分给5个人,每人可以分几支,还剩几支等。这样让学生在操作中思维,在思维中操作 ,理解了被除数是总数,除数和商分别是要分的份数和每份数,余数是不够一份而多出的数,余数要比除数小 的道理。在头脑中形成了正确清晰的表象,正确的思维才有牢固的基础。 2.直观演示,丰富表象 小学生无意注意占重要地位,任何新鲜事物的出现都会引发学生积极参与学习过程的兴趣。在教学过程中 ,用图片、教具或电教手段组织教学,把抽象知识形象化,让学生充分感知所学材料,有了定量的感性材料, 才能在脑中留下鲜明的映象。 例如:教学“长方体认识”,教师可以先出示学生日常生活中熟悉的长方体实物,如:火柴盒、粉笔盒、 砖头等,这些物体都是长方体。然后让学生自己列举长方体实物(书柜、木箱、厚书、铅笔盒……),通过感 知实物,学生对什么样的物体是长方体获得了初步的感性认识。在此基础上,教师再引导学生边观察模型,边 看书本,从不同的位置和方向认识长方体的六个面及相对的面的面积相等,十二条棱及互相平行的棱长相等的 特点;通过观察长方体的一个顶点和相交于这个顶点的三条棱长,认识长方体的长、宽、高;通过模型的平放 、侧放、直立三种形态,来说明长、宽、高相对说来是固定不变的,把知识讲“活”,这样学生在动口、动脑 的学习过程中建立了清晰深刻的表象,为思维的理性化提供了条件。 电教手段引入课堂,可变静为动,化近为远,并以它丰富多彩、灵活多样的教学形式,为学生提供反映思 维过程的演示,能充分调动学生的心理因素,取得较好的效果。例如:在教“求另一个加数的减法应用题”时 ,通过幻灯片的演示,使学生形象地理解总数与部分的关系,即总数-部分=另一部分。 教学中,要利用各种教学手段,让学生充分感知,在脑中建立清晰的数学表象,为提高学生的数学想象力 积累素材。 二、引导想象,发展形象思维 现代认知心理学认为,表象不但可以储存,而且可以对储存的表象痕迹(信息)进行加工改组,形成新的 表象,即想象表象,它也是进行形象思维的重要方式。所以,教师要善于创设课堂教学中的问题情景,如图示 情景、语言情景,激发学生参与探索的欲望,充分发挥学生丰富的想象力。 如:教完梯形知识后,可引导学生想象:“当梯形的一个底逐渐缩短,直到为0,梯形会变成什么形?当梯 形短底延长, 直到与另一底边相等时,它又变成什么形?”借助表象,能有机地把看上去似乎无联系的三角形 、平行四边形、梯形结合起来。还可以根据梯形面积公式记忆三角形和平行四边形的面积公式: 1 S[,梯形]=—(a+b)h 2 1 当a=0时,变成三角形,面积公式为:S=——ah 2 当a=b时,变成平行四边形,面积公式为:S=ah 三、数形结合,培养形象思维能力 数学是研究现实世界中数量关系和空间形式的学科,从总的来说,数学是数与形结合的学科。不同类型的 数学图形,提供了大脑形象思维的表象材料,调动了右脑思维的积极性和主动性,提高了形象思维能力,促进 了个体左右脑的协调发展,使人变得更聪明。 例如:课本中配合应用题的具体情节而设计的插图,开阔了学生形象思维的天地,增强了刻苦学习的意志 。又如课本中出示的例题和复习题,表示数量关系时,运用了绚丽色彩和各种小动物、植物、大河、山川,现 代的飞机、汽车、轮船、卫星、建筑,古代的文物、书籍……这些不仅对理解数量关系有利,而且对学生形象 思维能力的发展和审美能力的提高起着重要的作用。 再说应用题教学,由于应用题是事理、文理、算理三者的结合,所以应用题的原型比较复杂抽象,学生摄 入大脑后难以形成清晰的表象。如果采用数形结合的方法画出线段图,便可帮助学生建立正确的表象,使隐蔽 复杂的数量关系变得明朗。例如:“小亮的储蓄箱中有18元,小华储蓄的钱是小亮的5/6,小新储蓄的是小华 的2/3,小新储蓄了多少元?”这题学生往往难以确立单位“1”的量。教学时, 可引导学生画出如下线段图 来分析数量关系: 根据线段图,同学可以很快列出算式:18×5/6×2/3-10(元) 所以说线段图具有半抽象半具体的特点,它既能舍弃应用题的具体情节,又能形象地揭示条件与条件、条 件与问题之间的关系,把数转化为形,明确显示出已知与未知的内在联系,激活学生的解题思路。这里线段图 的运用、数与形的结合,较好地激发了学生的再造性想象,不仅发展了学生的形象思维,而且实现了形象思维 与抽象思维的互补。
随风来雨
圆周率“π”的由来 很早以前,人们看出,圆的周长和直经的比是个与圆的大小无关的常数,并称之为圆周率.1600年,英国威廉.奥托兰特首先使用π表示圆周率,因为π是希腊之"圆周"的第一个字母,而δ是"直径"的第一个字母,当δ=1时,圆周率为π.1706年英国的琼斯首先使用π.1737年欧拉在其著作中使用π.后来被数学家广泛接受,一直没用至今. π是一个非常重要的常数.一位德国数学家评论道:"历史上一个国家所算得的圆周率的准确程度,可以做为衡量这个这家当时数学发展水平的重要标志."古今中外很多数学家都孜孜不倦地寻求过π值的计算方法. 公元前200年间古希腊数学家阿基米德首先从理论上给出π值的正确求法.他用圆外切与内接多边形的周长从大、小两个方向上同时逐步逼近圆的周长,巧妙地求得π 会元前150年左右,另一位古希腊数学家托勒密用弦表法(以1 的圆心角所对弦长乘以360再除以圆的直径)给出了π的近似值3.1416. 公元200年间,我国数学家刘徽提供了求圆周率的科学方法----割圆术,体现了极限观点.刘徽与阿基米德的方法有所不同,他只取"内接"不取"外切".利用圆面积不等式推出结果,起到了事半功倍的效果.而后,祖冲之在圆周率的计算上取得了世界领先地位,求得"约率" 和"密率" (又称祖率)得到3.1415926<π<3.1415927.可惜,祖冲之的计算方法后来失传了.人们推测他用了刘徽的割圆术,但究竟用什么方法,还是一个谜. 15世纪,伊斯兰的数学家阿尔.卡西通过分别计算圆内接和外接正3 2 边形周长,把 π 值推到小数点后16位,打破了祖冲之保持了上千年的记录. 1579年法国韦达发现了关系式 ...首次摆脱了几何学的陈旧方法,寻求到了π的解析表达式. 1650年瓦里斯把π表示成元穷乘积的形式 稍后,莱布尼茨发现接着,欧拉证明了这些公式的计算量都很大,尽管形式非常简单.π值的计算方法的最大突破是找到了它的反正切函数表达式. 1671年,苏格兰数学家格列哥里发现了 1706年,英国数学麦欣首先发现 其计算速度远远超过方典算法. 1777年法国数学家蒲丰提出他的著名的投针问题.依靠它,可以用概率方法得到 的过似值.假定在平面上画一组距离为 的平行线,向此平面任意投一长度为 的针,若投针次数为 ,针马平行线中任意一条相交的次数为 ,则有 ,很多人做过实验,1901年,有人投针3408次得出π3.1415926,如果取 ,则该式化简为 1794年勒让德证明了π是无理数,即不可能用两个整数的比表示. 1882年,德国数学家林曼德证明了π是超越数,即不可能是一个整系数代数方程的根. 本世纪50年代以后,圆周率π的计算开始借助于电子计算机,从而出现了新的突破.目前有人宣称已经把π计算到了亿位甚至十亿位以上的有效数字. 人们试图从统计上获悉π的各位数字是否有某种规律.竞争还在继续,正如有人所说,数学家探索中的进程也像π这个数一样:永不循环,无止无休……
这个没人会知道老师一年一换,自己好好复习吧!我祝你得个好成绩
百度一下,我经常这样写作文
小学数学活动课的开设原则与形式把活动课提高到课程设置的高度来认识与安排,这是国家教委颁发的义务教育阶段的《课程方案》中关于 课程设置的重要改革内容之一,《课程方
怎样才能写好数学的小论文呢?下面是我收集整理的六年级数学论文500字以供大家学习。 六年级数学论文500字(一) 小学数学总复习不同于单元复习、学期复习,对学生
怎样才能写好数学的小论文呢?下面是我收集整理的六年级数学论文500字以供大家学习。 六年级数学论文500字(一) 小学数学总复习不同于单元复习、学期复习,对学生