• 回答数

    4

  • 浏览数

    322

武装的蔷薇1
首页 > 学术论文 > 果蝇在发育学研究的意义的论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

扬州宏宏

已采纳

多线染色体经染色后,出现深浅不同、密疏各别的横纹,这些横纹的数目和位置往往是恒定的,代表着果蝇等昆虫的种的特征;如染色体有缺失、重复、倒位、易位等,很容易在唾腺染色体上识别出来。

由于细胞分裂停止在间期,核物质螺旋化程度低而充分伸展,这种染色体比普通染色体大得多,宽约5um,长约2000um,是其体细胞中期染色体长度的100-200倍。伸展形式的DNA长度约为40000um,只需简单的染色和压片,就可以很容易地在光学显微镜下观察到。

扩展资料

在果蝇唾腺细胞中每一个多线染色体都是经过大约9个循环的复制产生的,所以每条多线染色体至少包含了500-1000条单染色体(DNA纤丝),某些昆虫的多线染色体包含了多达16000条。经过醋酸洋红或地衣红染色后,在高倍光镜下就可以看到每条多线染色体都是由暗带和明间带直线交替组成的。

同时也已证明,大部分DNA存在于暗区带之内,每条区带都相应于染色体上染色粒的聚合区域,它能被碱性染料染得很深,孚尔根染色呈现阳性,而明间带则几乎不着色。以后又证明了每条区带都包括几个或几十个基因位点。

参考资料来源:百度百科-多线染色体

参考资料来源:百度百科-果蝇唾腺染色体

143 评论

爱美食的飘飘

纵观整个生命科学发展的历史,从以观察个体水平为主的博物学以及形态分类学阶段,到以实验方法为主的实验生物学阶段,再发展到今天的分子生物学阶段,以孟德尔遗传规律重大发现为代表的实验生物学阶段对整个生命科学的发展起到了承上启下的重要作用,实际意义上推动整个遗传学发展的正是以果蝇为模式动物而进行的一系列遗传学实验。

在整个遗传学发展的演变过程中,果蝇与遗传学相互融合、发展、进步。在不断用于各种遗传实验的过程中,它也极大程度地丰富和更新了遗传学的概念及内容,对于生命科学的发展有着不可磨灭的贡献。

果蝇(fruit fly)是双翅目、短角亚目、果蝇科、果蝇属昆虫。由于其清晰的遗传背景以及简便的实验操作,使其在遗传学、发育生物学、生物化学以及分子生物学等多个领域都占据了不可替代的位置。黑腹果蝇(Drosophila melanogaster )在1830年首次被描述。而它第一次被用作试验研究对象则要到1901年,试验者是动物学家和遗传学家威廉·恩斯特·卡斯特。他通过对果蝇的种系研究,设法了解多代近亲繁殖的结果和取自其中某一代进行杂交所出现的现象。1910年,随着著名的遗传学家汤玛斯·亨特·摩尔根开始在实验室内培育果蝇并对它进行系统的研究,此后很多遗传学家都开始用果蝇作研究并且取得了很多遗传学方面的知识:经典的伴性遗传、连锁以及交换定律,还包括果蝇的性别决定机制以及其基因组测序以及基因在染色体上的分布。

果蝇的生活史与家蝇相似,由卵发育为成虫大体要经过卵、幼虫、蛹和成虫四个阶段,其中幼虫又分成一龄、二龄及三龄三个时期,属于完全变态发育。一只雌果蝇一生能产下300-400个卵,卵经过一天就可以孵化成幼虫,形成一个庞大的家族。这也是果蝇用于遗传研究的一大优点,可以很方便的产生足以用于数理统计分析的研究样本。

果蝇的生活史

果蝇的形状表型及其丰富,有较多的突变类型,并且有很多易于诱变分析的遗传特征,这也是奠定果蝇在遗传学中重要地位的一个主要原因。经常用于遗传学筛选的标记形状有果蝇的复眼性状,常见的包括白眼、红眼、朱砂眼、墨黑眼以及棒眼等;果蝇的翅膀也可以分为长翅、小翅、卷翅、直翅等;果蝇的体色也可以分为黑体、黄体以及灰体等。这些多样的表型,使得果蝇杂交实验中对亲本的组合选择也多种多样。

红眼果蝇与白眼果蝇

由于果蝇在遗传学中的长期研究积累了大量的信息与技术,使其成为生命科学研究中的重要模式生物。模式生物一般都因其结构简单、生活周期短、培养简单、基因组小等特点在生物以及医学领域发挥重要作用。果蝇作为模式生物,一方面是由于长期积累了很多关于果蝇的知识和信息,制备了大量的突变体,结合其自身携带的便于遗传操作的标记,极大地方便了实验的设计和操作;另一方面,在果蝇遗传研究过程中发展的一些有效的技术,现在还只能应用于果蝇,如定点同源重组以及基因定点敲除技术。

果蝇作为遗传学研究的经典模式动物,主要用来研究真核生物遗传学的基本原理以及概念。1910年,摩尔根发现白眼果蝇并将其用于遗传学研究,摩尔根验证了孟德尔学说,发现并解释了伴性遗传,提出了连锁遗传,绘制了果蝇遗传图谱。因此1933年的诺贝尔医学奖授予了摩尔根,以表彰他在研究染色体在遗传方面的功能中所做出的贡献。1946年,摩尔根的学生,被誉为“果蝇的突变大师”的米勒,证明X射线能使果蝇的突变率提高150倍,因而成为诺贝尔奖获得者。

果蝇的伴性遗传实验示意

果蝇作为发育生物的经典模式生物,很多参与发育调控的信号通路都是首次发现。例如,Ras信号转导途径就是首先通过对果蝇复眼光受体细胞和线虫产卵器发育过程(Sternberg and Han,1998)的研究而阐明的。Notch信号转导途径的主要成员基因也是首先在果蝇中克隆的。Nusslein-Volhard和Wieschaus用果蝇进行筛选发现了Hedgehog, Wingless和TGF-β等信号转导途径。利用这些通路中同源基因的保守性,也分别在小鼠以及人中发现了相同的发育信号通路。如:人和果蝇的体节形成都是由同源异型框基因控制。虽然人和果蝇的眼睛构造截然不同,但他们的早期发育都是由e1’基因控制的。小鼠Pax6(果蝇ey的同源基因)也可在果蝇中诱导眼的发育。

近年来的研究表明,果蝇和人类在肿瘤发生信号通路等方面的保守性很高,而且果蝇具有很强的遗传学可操作性,是肿瘤学研究有效的模型之一,可用于研究人类肿瘤发生、发展、转移等分子机制。

出品:科普中国

制作:teeth

监制:中国科学院计算机网络信息中心

“科普中国”是中国科协携同社会各方利用信息化手段开展科学传播的科学权威品牌。

本文由科普中国融合创作出品,转载请注明出处

248 评论

JojoYang1231

果蝇生活史果蝇科(Drosophilidae)果蝇属(Drosophila)昆虫。约1,000种。广泛用作遗传和演化的室内外研究材料,尤其是黄果蝇(D. melanogaster)易於培育。其生活史短,在室温下不到两周。 关於果蝇的遗传资料收集得比任何动物都多。用果蝇的染色体,尤其是成熟幼虫唾腺中最大的染色体,研究遗传特性和基因作用的基础。对果蝇在自然界的生物学了解得还不够。有些种生活以腐烂水果上。有些种则在真菌或肉质的花中生活。 [编辑本段]外观特征 黄果蝇(Drosophila melanogaster)体型较小,身长3~4mm。近似种鉴定困难,主要特征是具有硕大的红色复眼。 雌性体长毫米, 雄性较之还要小。雄性有深色后肢,可以此来与雌性作区别。 [编辑本段]分布范围果蝇类昆虫与人类一样分布于全世界,并且在人类的居室内过冬。由於体型小,很容易穿过砂窗,因此居家环境内也很常见。 [编辑本段]生活环境有些种生活以腐烂水果上。有些种则在真菌或肉质的花中生活。 在垃圾筒边或久置的水果上,只要发现许多红眼的小蝇,即是果蝇;果蝇类幼虫习惯孳生於垃圾堆或腐果上。 [编辑本段]黑腹果蝇 黑腹果蝇在1830年首次被描述。而它第一次被用作试验研究对象则要到1901年,试验者是动物学家和遗传学家威廉·恩斯特·卡斯特。他通过对果蝇的种系研究,设法了解多代近亲繁殖的结果和取自其中某一代进行杂交所出现的现象。1910年,汤玛斯·亨特·摩尔根开始在实验室内培育果蝇并对它进行系统的研究。之后,很多遗传学家就开始用果蝇作研究,并且取得了很多遗传学方面的知识,包括这种蝇类基因组里的基因在染色体上的分布。 雌蝇可以一次产下400个毫米大小的卵,它们有绒毛膜和一层卵黄膜包被。其发育速度受环境温度影响。在25℃环境下,22小时后幼虫就会破壳而出, 并且立刻觅食。因为母体会将它们放在腐烂的水果上或其他发酵的有机物上,所以它们的首要食物来源是使水果腐烂的微生物,如酵母和细菌,其次是含糖的水果。幼虫24小时后就会第一次蜕皮,并且不断生长,以到达第二幼体发育期。经过三个幼虫发育阶段和四天的蛹期,在25℃下过一天,就会发育为成虫。 [编辑本段]科学研究转基因果蝇转基因果蝇出世:可用激光照射遥控 遥控不再是电子产品的专利,科学家新培育出一种转基因果蝇,可以用激光照射来遥控它们的行为,让懒散的果蝇活动起来,开始爬行、跳跃或飞走。 有关论文发表在最新一期的《细胞》杂志上。虽然遥控这种果蝇还不能像开遥控汽车那样方便,但有关方法对研究动物的神经和行为有着重要意义。 以前,科学家在研究动物行为的神经基础时,一般用电极刺激神经等方法。但这些方法是侵入性的,可能妨碍动物的行动甚至使其瘫痪,而且电极也不可能接触到整个神经系统里的每个神经元。 美国耶鲁大学医学院的神经生物学家将一个来自大鼠的基因植入果蝇体内,这个基因编码一种离子通道蛋白质。在环境中存在生物能量分子ATP的情况下,该离子通道允许带电粒子通过细胞膜,从而传递电脉冲。 果蝇染色体随后,研究者给果蝇注射因为被另一种分子包裹而处于不活动状态的ATP分子。用紫外线激光照射果蝇,能使ATP分子从束缚中解放出来,启动离子通道,使果蝇的神经受到电信号刺激。 实验显示,如果该离子通道蛋白质在控制果蝇爬行的多巴胺能神经元中表达,本来懒散的果蝇在激光照射下会变得过度活跃。如果离子通道表达在控制果蝇逃跑反应的大神经中,则激光可使果蝇跳来跳去、抖动翅膀并飞走。 研究者说,这一技术可用于研究生物的许多其他行为,例如求偶、交配和进食等 果蝇分为白眼和红眼,白眼属于基因突变的结果,是位于X染色体的隐性遗传,因为它只有4对染色体,便于实验观察,常用于研究伴性遗传。美国生物学家摩尔根曾利用这一性状研究基因的连锁与互换定律。 但需注意,果蝇能回交,其生长周期短,但是摩尔根做过回交实验。 果蝇与摩尔根——遗传定律的春天 [1] 摩尔根在遗传学实验中主要是以果蝇为实验材料,他的重要发现都是从果蝇身上取得的。有人说:上帝为了摩尔根才创造了果蝇。 可爱的小果蝇 果蝇是小型蝇类动物,体长只有几个毫米。,上于它喜欢在腐烂水果上飞舞,所以人称果蝇。实际上它喜欢的是腐烂水果发酵产生出的酒,所以酒发酵池前也会招引来很多果蝇,古希腊人称果蝇为“嗜酒者”。 作为实验动物,果蝇有很多优点。首先是饲养容易,用一只牛奶瓶,放一些捣烂的香蕉,就可以饲养数百甚至上千只果蝇。第二是繁殖快,在25℃左右温度下十几天就繁殖一代,一只雌果蝇一代能繁殖数百只。孟德尔以豌豆为实验材料,一年才种植一代。摩尔根最初以小鼠和鸽子为实验动物研究遗传学,效果也不理想。后来经人介绍,摩尔根于1908年开始饲养果蝇。果蝇只有四对染色体,数量少而且形状有明显差别;果蝇性状变异很多,比如眼睛的颜色、翅膀的形状等性状都有多种变异,这些特点对遗传学研究也有很大好处。对于这些有利的特点,摩尔根也不是一下子都认识清楚了的,而是后来在研究工作中逐渐体会到的。 由于摩尔根的实验室中饲养了很多果蝇,研究人员整天在侍候果蝇、观察研究果蝇,所以人称他领导的实验窒为“蝇室”。在摩尔根的领导之下,这个“蝇室”成了全世界的遗传学研究中心。他们的研究成果为全世界遗传学界所注目,他们写出的论文和著作是全世界遗传学家的必读书和重要参考文献。这个“蝇室”还培养出了许多著名遗传学家。 以前苏联的李森科为代表的一些人,曾大肆攻击摩尔根学派以果蝇为主要研究对象是毫无实际意义,是不关心国计民生。事实已经证明这种攻击是站不住脚的。从果蝇身上发现的遗传规律,对其它动植物、对人类也同样适用。理论上有了重要发展,在实践上也必将有重要意义。 发现伴性遗传 摩尔根的实验室起初是用果蝇研究后天获得性状能否遗传的问题。他把果蝇在黑暗环境中连续培养很多代,按照拉马克的用进废退、后天获得性状可以遗传的理论,其视力应该逐渐退化。但是结果不是这样,摩尔根认为这个实验白费功夫了。 摩尔根用果蝇做出了重要的遗传学发现,是从一只白眼果蝇开始的,他由这只白眼果蝇发现了伴性遗传。野生的果蝇眼睛都是红色,但是在1910年时摩尔根发现了一只白眼雄果蝇。按照基因学说,这是发生了基因突变。用这只白眼雄蝇与普通的红眼雌蝇交配,子一代的果蝇都是红眼。按孟德尔学说解释,红眼是显性性状,白眼是隐性性状。子一代的果蝇交配产生出了子二代,结果雌果蝇全是红眼,雄果蝇一半是红眼、一半是白眼。如果不论雌雄,红眼果蝇与白眼果蝇的比例是3:1,符合孟德尔定律。可是为什么白眼都出现在雄果蝇身上呢? 摩尔根也做了回交试验,让子一代的红眼雌蝇与最初发现的那只白眼雄蝇交配,结果生出的果蝇无论雌雄都是红眼白眼各占一半,这也符合孟德尔定律。 摩尔根根据这些实验结果进行了深入思考,他提出了一种假设:决定果蝇眼睛颜色的基因存在于性染色体中的X染色体上雄果蝇的一对性染色体由X染色体和Y染色体组成,Y染色体很小,其上基因很少,所以只要其x染色体上有白眼基因,白眼性状就表现出来。雌果蝇的性染色体是一对x染色体,因为白眼是隐性性状,只有其一对X染色体上都有白眼基因才会表现为白眼性状。根据这种假设,就可以圆满解释上述实验结果。 白眼基因存在于性染色体上,它的遗传规律与性别有关,这就叫:“伴性遗传”。 人色盲的遗传、血友病的遗传,也是伴性遗传。色盲患者多是男性,女性很少,男性色盲患者的子女一般不色盲,可是其外孙中又出现色盲。对这种现象人们过去一直迷惑不解,伴性遗传概念的提出使人明白了其中的奥妙。 发现连锁与交换定律 各种生物染色体的数量是不多的,例如果蝇是4对染色体,豌豆是7对,玉米是10对,人也只有23对。但是,每种生物基因的数量要比其染色体数量多得多。既然基因是存在于染色体上,那么每条染色体上肯定不只有一个基因,而是有许多个。好多人都从理论上做出了这种推测,但是拿不出实验证据,他们根本无法确定某种生物的哪个基因是存在于它的哪一条染色体上。自然科学讲究实证,没有证据时理论是不能得到承认的,至多算是一种合理的假设。 第一个拿出这种证据的是摩尔根,证据来自对果蝇的研究。 在证明白眼突变基因是存在于果蝇的x染色体上之后,摩尔根又发现了残翅突变、朱色眼突变、黄身突变等也是伴性遗传,表明它们的基因也是存在于x染色体上。 孟德尔定律说,在形成配子时成对的基因互相分离,自由组合。根据细胞学研究结果,形成配子时是成对的染色体互相分离,自由组合,所以,只有不在同;条染色体上的基因才可以自由组合,而位于同一染色体上的基因则会连在一起遗传,这就是基因连锁。这种认识也是先从理论上推测出来,然后实验证实。 通过适当地选择交配对象,摩尔根得到了同时具有两种伴性遗传突变的果蝇,如白眼黄身果蝇。他让这种果蝇与普通的野生果蝇或具有不同伴性遗传突变的果蝇交配,果然发现了基因连锁。例如白眼黄身果蝇与野生的红眼灰身果蝇交配,后代中白眼黄身者或红眼灰身者占99%,而没有表现为连锁遗传的即白身灰身者或红眼黄身者,只占1%。 然而连锁并不是百分之百,而且不同基因之间的连锁程度有高有低。摩尔根因此提出,不同染色体之间在形成配子时会发生基因交换,这是由于染色体之间可能发生物质交换而引起的。 摩尔根又进一步想到,同一条染色体上的两个基因,相距越远则发生交换的可能性越大,因此,根据交换率的高低可以判断出基因之间的相对位置。综合大量实验结果、摩尔根绘出了果蝇4对染色体的基因图:把每条染色体上的所有基因排成一条直线,交换率越小的摆的位置愈近。在根本无法直接看到基因的情况下,摩尔根竞然绘出了这样的基因图,人们不得不佩服他的实验工作和逻辑推理都非常严密。 果蝇让位于微生物 摩尔根用果蝇做的遗传学研究,证据确凿地表明基因存在于染色体上,发现了伴性遗传和连锁与交换规律,而且他们对果蝇遗传所做的精细分析还导致这样估计:基因的大小可能类似于最大的有机分子。但是,基因是什么?基因是通过什么方式控制性状呢?直到20世纪30年代仍然一无所知。孟德尔-摩尔根学派遗传学实质上是形式遗传学。虽然基因有物质基础,但是摩尔根用果蝇做的遗传学研究并非是从对基因物质本身的认识出发的,各种结论都是依据实验结果分析推理出来的。 摩尔根想把他的遗传学研究推进到一个新层次,想研究基因是怎样发挥控制性状功能的。 20世纪初时曾有一位英国医生发现黑尿病是遗传性疾病,而且发现黑尿病的病因是患者体内缺少尿黑酸氧化酶,因而不能使尿黑酸分解。他因此提出,基因能控制酶的形成,进而影响代谢过程。 摩尔根的实验室早在30年代用果蝇继续做这方面的研究。他们的实验结果表明,决定果蝇眼睛颜色的物质有一个转化过程,而且他们可以分析出来,哪一种眼色突变是缺少哪一步反应所需要的酶。可是他们无法把有关的各种物质检验和分离出来,实验无法深入。 在生物科学发展迅速的今天,虽然对于生物的研究领域及研究生物逐步多元化,但果蝇作为经典模式生物,在生物学领域的研究和发展有着极其重要的地位。果蝇作为一种模式生物,依旧具有很大的研究潜力。

199 评论

西由位门1

唾腺染色体是遗传分析的理想材料:唾腺染色体存在于双翅目昆虫幼虫消化管(尤其是唾腺)中的巨大的、可见的染色体,①巨大而伸展,复制产物不分开(又称多线染色体),②具有体细胞联会现象 ③有深浅相见的横纹 ④显见Puff结构(幼虫发育出现的特殊形态的泡状结构或称染色体疏松,是正在活跃转录RNA的位置。)

101 评论

相关问答

  • 果蝇研究论文

    在研究性别的寿命差异问题上,已经证实昆虫及大多数其它种动物雄性(古)的寿命较短。大多数作者对此看法已无异议或分岐较小。然而,由于在雌性(早)寿命长于古的假设规律

    小楼新雨 4人参与回答 2023-12-12
  • 研究生论文发表的意义在哪

    非常有帮助的,对复试阶段的面试有用,你要想了解更多可以咨询海文考研的老师

    1号女王 6人参与回答 2023-12-06
  • 教育研究方法的意义论文

    1.教育研究方法的内涵科学方法:是认识自然或获得科学知识的程序或过程。教育研究:与所有科学研究一样,由三个基本要素构成:客观事实、科学理论和方法技术。它是以发现

    人大菲菲 3人参与回答 2023-12-06
  • 学前教育研究意义的科研论文

    一、学前教育科学研究(意义、概念、特点) 1、意义:①开展学前教育科研,为深化学前教育改革提供科学依据。 ②探索学前教育规律,为学前教育实践提供理论指导。 ③丰

    winnie222626 4人参与回答 2023-12-09
  • 果蝇在发育学研究的意义的论文

    多线染色体经染色后,出现深浅不同、密疏各别的横纹,这些横纹的数目和位置往往是恒定的,代表着果蝇等昆虫的种的特征;如染色体有缺失、重复、倒位、易位等,很容易在唾腺

    武装的蔷薇1 4人参与回答 2023-12-07