青岛崂山逗号
您好:干细胞(stem cells, SC)是一类具有自我复制能力(self-renewing)的多潜能细胞,在一定条件下,它可以分化成多种功能细胞。根据干细胞所处的发育阶段分为胚胎干细胞(embryonic stem cell,ES细胞)和成体干细胞(somatic stem cell)。根据干细胞的发育潜能分为三类:全能干细胞(totipotent stem cell,TSC)、多能干细胞(pluripotent stem cell)和单能干细胞(unipotent stem cell)。干细胞(Stem Cell)是一种未充分分化,尚不成熟的细胞,具有再生各种组织器官和人体的潜在功能,医学界称为“万用细胞”。肿瘤细胞实质就是肿瘤。肿瘤细胞有三个显著的基本特征即:不死性,迁移性和失去接触抑制。除此之外,肿瘤细胞还有许多不同于正常细胞的生理、生化和形态特征。肿瘤(tumor,neoplasm)是一种基因病,但并非是遗传的;它是指细胞在致瘤因素作用下,基因发生了改变,失去对其生长的正常调控,导致异常增生。可分为良性和恶性肿瘤两大类。前者生长缓慢,与周围组织界限清楚,不发生转移,对人体健康危害不大。后者生长迅速,可转移到身体其它部位,还会产生有害物质,破坏正常器官结构,使机体功能失调,威胁生命。
小马摩羯
AACRl3 (American As.sociation for Cancer Research)2006年给出的定义是:肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的细胞。传统观念认为,肿瘤是由体细胞突变而成,每个肿瘤细胞都可以无限制地生长。但这无法解释肿瘤细胞似乎具有无限的生命力以及并非所有肿瘤细胞都能无限制生长的现象。肿瘤细胞生长、转移和复发的特点与干细胞的基本特性十分相似,因此,有学者提出肿瘤干细胞(tumor stem cell,TSC)的理论。这一理论为我们重新认识肿瘤的起源和本质,以及临床肿瘤治疗提供了新的方向和视觉角度。目录概念 实验依据肿瘤启动细胞血液TSC实体瘤干细胞TSC的特性极强的致瘤能力TSC与成体干细胞关系成体干细胞TSC与Bmi1Bmi?干细胞与TSC有相似的生长调控机制TSC理论对目前肿瘤临床的影响肿瘤基础与临床移植技术结语图书信息内容简介图书目录概念 实验依据 肿瘤启动细胞 血液TSC 实体瘤干细胞TSC的特性 极强的致瘤能力 TSC与成体干细胞关系成体干细胞TSC与Bmi1 Bmi? 干细胞与TSC有相似的生长调控机制TSC理论对目前肿瘤临床的影响 肿瘤基础与临床 移植技术 结语图书信息 内容简介 图书目录展开 编辑本段概念 实验依据 从20世纪50年代Southam C.等进行的肿瘤细胞自体/异体移植实验到后来众多实验都证实并非每个肿瘤细胞都有再生肿瘤的能力,只有一小部分肿瘤细胞在体外克隆形成实验中可以形成克隆,在异种移植模型中,只有移植人大量的肿瘤细胞才能形成移植瘤,究竟何种细胞行使肿瘤起源细胞(tumor—initiating cell,T—IC)的功能?目前有两种理论解释,一是随机化理论,它认为肿瘤细胞具有同质性,即每一个肿瘤细胞都具有新生肿瘤的潜力,但是能进入细胞分化周期的肿瘤细胞很少,是一个小概率随机事件。而分层理论认为,肿瘤细胞具有功能异质性,只有有限数目的肿瘤细胞具有产生肿瘤的能力,但这些肿瘤细胞再生肿瘤是高频事件。虽然两种理论都认为只有很少数量的肿瘤细胞能再生肿瘤,但是机制是完全不同的。目前的实验结果倾向于第二种解释,即肿瘤组织中存在数量稀少的癌细胞,在肿瘤形成过程中充当干细胞的角色,具有自我更新、增殖和分化的潜能,虽然数量少,却在肿瘤的发生、发展、复发和转移中起着重要作用,由于其众多性质与干细胞相似,所以这些细胞被称为肿瘤干细胞,肿瘤干细胞能不对称产成两种异质的细胞,一种是与之性质相同的肿瘤干细胞,另一种是组成肿瘤大部分的非致瘤癌细胞。AACRl3 (American As.sociation for Cancer Research)2006年给出的定义是:肿瘤中具有自我更新能力并能产生异质性肿瘤细胞的细胞。肿瘤启动细胞 (tumor?initiating cell,T?IC) 肿瘤细胞自体同源移植实验表明,移植瘤细胞数大于106个以上,才能形成肿瘤[1]。体外培养骨髓瘤、人肺癌、卵巢癌及神经母细胞瘤细胞也发现,仅极少细胞能形成集落[2,3]。这些数量极其稀少,却在肿瘤发生中起主要作用的肿瘤细胞亚群,被称为T?IC。 血液TSC 急性髓性白血病的研究表明[4,5],不同的白血病细胞亚群移植到严重联合免疫缺陷病的裸鼠,其肿瘤细胞成瘤能力差异巨大。占总数~1%的白血病细胞有稳定持续的形成肿瘤克隆的能力,具备干细胞特性,被称作白血病干细胞。实体瘤干细胞 少数睾丸癌细胞含有与不成熟胚胎细胞同样的表面标志,提示实体瘤中TSC可能存在 [6]。首先证实实体瘤中TSC存在的是在2003年,Clarke的研究小组从乳腺癌中分离出了乳腺癌干细胞[7]。随即,星形细胞瘤、成神经管细胞瘤与胶质母细胞瘤等脑肿瘤干细胞先后分离成功[8]。编辑本段TSC的特性极强的致瘤能力 TSC数目极其稀少,成瘤能力较普通肿瘤细胞大数百倍以上[7] ,是肿瘤发生、发展与维持的基础。 自我更新并多向分化 肿瘤中部分细胞多向分化的现象在临床观察中很早就有发现:前列腺瘤经雄激素治疗后可以变成小细胞癌、鳞癌或者是癌肉瘤;生殖细胞肿瘤也可以转变为非生殖细胞肿瘤的类型,包括肉瘤、癌、神经外胚层肿瘤以及造血组织恶性肿瘤[9] ;大部分混合瘤中虽然肿瘤细胞有各种不同的组织形态,但却具有遗传同源性,说明它们来源于一个共同的祖细胞[10];单个大鼠结肠腺瘤细胞注射到小鼠,可生成结肠所有类型细胞,如黏膜细胞、柱状细胞、内分泌细胞和未分化的肿瘤细胞。 多发性骨髓瘤中得到的TSC属于B淋巴细胞亚群,能自我更新并分化为浆细胞和肿瘤细胞[11]。乳腺癌细胞与脑肿瘤TSC移植到裸鼠,可以生成原来肿瘤的所有细胞类型,说明TSC具备自我更新与多向分化能力 [7] 。TSC与成体干细胞关系 肿瘤细胞突变最早发生于干细胞 干细胞与TSC具有无限增殖相似的生物学特性,只需突变获得过度增殖能力, 就可以转化成为肿瘤[12];干细胞比分化细胞周期性更新快,寿命长,突变更容易累积。干细胞是突变的靶。 表面标记表明TSC来源于成体干细胞 由于造血干细胞研究进展,白血病干细胞的分离和表面标记测定较早开始。目前研究发现,所有几乎白血病干细胞与造血干细胞一致,均为CD34+ [13],如所有的急性单核细胞性白血病(除急性早幼粒细胞性白血病)[4,5] 干细胞都为[CD34+, CD38?]。 白血病细胞为[CD34+CD38-Thy?1-]。急性髓性白血病细胞频繁发生染色体易位(8;21),形成AML1?ETO嵌合转录物。患者缓解后骨髓中有一部分干细胞仍能合成AML1?ETO融合蛋白,但这部分干细胞及其子代不能诱发白血病,在体外能分化为正常的红细胞系,细胞表面标记也与正常造血干细胞几乎完全一致,为[CD34+CD38-Thy?1+]。说明易位最早发生于正常造血干细胞,突变在造血干细胞的亚群或子代中发生,导致白血病的发生。根据白血病干细胞的标记与正常造血干细胞的不同,突变大约发生于Thy?1-的祖细胞或丢失Thy?1-的造血干细胞[4,14,15]。 其他成体干细胞分离与表面标记研究不够深入,目前难以比较TSC与成体干细胞的表面标记。动物实验发现,乳腺癌干细胞标记CD44+在幼稚细胞、祖细胞或干细胞中都是经常见到的[7];而64位乳腺癌患者的观察证实,大部分患者的肿瘤细胞表型与干细胞表型相同[CK8+,14+,18+;Vi? mentin+,EGFR+] [16];对未成年患者脑肿瘤研究表明,TSC标记CD133、musashi?1、 Sox2、melk、 PSP、 Bmi?1和nestin,与神经干细胞完全一致[17]。编辑本段成体干细胞TSC与Bmi1 基因参与正常造血过程,其功能障碍与AML有关。Bmi?1基因敲除的小鼠干细胞移植入免疫力摧毁的小鼠,干细胞可以短期产生血细胞 ,8周后,移植细胞基本消失。说明Bmi?1基因对正常血液干细胞的自我更新是必要的[18,19]。Bmi? 1基因对白血病细胞的产生也是必要的。Meis1a和Hoxa9癌基因导入小鼠骨髓细胞可以产生AML模型。把Meis1a和Hoxa9癌基因导入正常小鼠与BMI?1基因失活小鼠,都可以产生白血病细胞。但是Bmi?1基因失活小鼠的白血病细胞移植入免疫缺陷小鼠后不能再产生白血病细胞。所以,Bmi?1基因对白血病干细胞的自我更新和维持都是必要的[20]。干细胞与TSC有相似的生长调控机制 Wnt、SHH(sonichedgehog)、Notch途径,也往往调控干细胞的生长分化,提示机体一生中细胞的生长分化由相似的生长调控机制调节,其异常可引起细胞过度增殖,导致肿瘤。 与干细胞有相同的起源 我们知道,侧脑室室管膜下层与海马齿状回是神经干细胞的起源地。通过神经祖细胞与其他祖细胞癌基因神经纤维瘤病1与p53抑癌基因突变,可以制造小鼠脑肿瘤模型。这些模型小鼠产生不同的脑肿瘤。影象学研究表明,这些脑肿瘤虽然可以在广泛的脑内区域产生,但这些肿瘤都起源于侧脑室与海马。编辑本段TSC理论对目前肿瘤临床的影响肿瘤基础与临床 TSC理论可以解释临床上肿瘤对放射治疗与化疗药物治疗不敏感的原因。正常干细胞拥有排出化疗药物的分子泵,对化疗药物敏感性低。TSC与正常干细胞一样,比较分化细胞有更好抵御化疗与放射治疗的能力[21]。 TSC理论认为,肿瘤一开始就有转移能力,只要TSC到达一个新的区域,转移将不可避免。 理论对肿瘤诊断与预后判断的影响 慢性粒细胞白血病中肿瘤细胞的CD38阳性率大于20%的患者,其病情往往处于进展期;而CD38阴性的患者预后较好 [22] 。 恶性程度高的成神经管细胞瘤与胶质母细胞瘤比较恶性程度较低的星形细胞瘤含TSC的比例要高一些[14]。Clarke指出,极度恶性的乳腺癌,其TSC的比例可达到肿瘤细胞总数的25%。 前列腺早期干细胞突变形成的肿瘤会表达一些神经内分泌标志,象嗜铬粒蛋白A(CgA),但不表达特异性前列腺抗原(PSA) ;源于分化晚期的前列腺干细胞产生的肿瘤细胞表达PSA,而不是CgA。以此类推,源于分化中期干细胞的前列腺癌会同时表达CgA和PSA[23]。 肿瘤治疗的靶—TSC 传统的化疗药物主要是通过筛选能杀灭分裂中肿瘤细胞的化合物。TSC理论认为,只要存在TSC,肿瘤就不可能治愈。所以,肿瘤治疗的焦点是杀伤TSC。但是TSC通常处于静止状态,只是在增殖时才开始快速分裂产生子细胞,所以,按照传统方法筛选出来的肿瘤治疗药物与杀灭TSC的要求差异巨大。针对TSC治疗肿瘤已经取得一定的进展:在80%前列腺癌中表达的特有标记前列腺干细胞抗原,是前列腺癌治疗很好的靶点。静脉注射前列腺干细胞抗原单克隆抗体治疗前列腺癌,可以延长荷瘤小鼠的存活时间,并基本抑制前列腺癌肺转移[24];针对肿瘤干细胞的重要位点?Bmi1进行肿瘤免疫治疗的研究也正进行中移植技术 使用分子芯片技术,可分析TSC与他们相应成体干细胞基因表达特征的不同。利用这种差异,可能会出现既直接针对TSC,又能保护成体干细胞的治疗手段; 自体造血干细胞移植中,通过TSC的特征标记,可以去除污染的TSC。结语 目前,在血液肿瘤、乳腺癌、脑肿瘤及前列腺癌中,TSC研究取得了一定的进展。但是,各种TSC的鉴定与分离、TSC特征以及TSC与成体干细胞的确切关系,迫切需要通过一些严谨而富有想象力的实验进行探索。TSC理论是肿瘤基础与临床理论上的突破,必将对肿瘤发生、发展的了解,以及肿瘤的临床诊断、治疗都带来深远的影响编辑本段图书信息 书 名: 肿瘤干细胞 作 者:窦骏 出版社: 东南大学出版社 出版时间: 2009年07月 ISBN: 9787564117269 开本: 16开 定价: 元内容简介 《肿瘤干细胞》较全面介绍了干细胞与肿瘤、干细胞与肿瘤干细胞、肿瘤与干细胞及肿瘤干细胞间的分子联系、肿瘤干细胞的生物学特性、肿瘤干细胞的来源、肿瘤干细胞研究的演进、肿瘤干细胞研究现状、常见的肿瘤干细胞研究、肿瘤干细胞研究面对的挑战与任务等方面内容,详细描述了国内外科研人员近年来对肿瘤干细胞的研究概况与进展,并提供了有关肿瘤干细胞研究的新技术和新信息,内容较丰富,具有创新性、科学性、实用性和可读性。图书目录 第一章 肿瘤干细胞绪论 第一节 干细胞与肿瘤干细胞 第二节 肿瘤干细胞的生物学特性 第三节 肿瘤干细胞的细胞起源 第四节 肿瘤干细胞的研究现况与展望 第二章 肿瘤干细胞研究演进 第一节 肿瘤研究历史 第二节 干细胞研究历史与演进 第三节 肿瘤干细胞研究演进 第三章 肿瘤与干细胞生物学特性 第一节 肿瘤生物学特性 第二节 干细胞生物学特性 第三节 肿瘤与干细胞共有的生物学特性 第四节 肿瘤干细胞的生物学特性 第四章 肿瘤与干细胞及肿瘤干细胞间的分子联系 第一节 肿瘤、干细胞、肿瘤干细胞相关的信号传导途径 第二节 肿瘤、干细胞、肿瘤干细胞间的分子联系研究展望 第五章 肿瘤干细胞特征性表面标记 第一节 肿瘤干细胞特征性CD分子研究 第二节 肿瘤干细胞特征性ATP结合框转运体 第三节 肿瘤干细胞其他特征性分子研究 第六章 肿瘤干细胞体外培养特性 第一节 脑神经胶质瘤干细胞体外培养特性 第二节 卵巢癌干细胞体外培养特性 第三节 消化道肿瘤干细胞体外培养特性 第四节 乳腺癌肿瘤干细胞体外培养特性 第五节 其他肿瘤干细胞体外培养特性 第七章 SP细胞及肿瘤干细胞 第一节 SP细胞来源及分布 第二节 SP细胞的特性及与肿瘤干细胞的关系 第三节 影响SP细胞检测的因素及展望 第八章 肿瘤干细胞在动物模型致瘤性研究 第一节 肿瘤干细胞在NOD/SCID小鼠致瘤性研究 第二节 如何评价肿瘤干细胞在动物模型中的致瘤性 第九章 肿瘤干细胞的放化疗抵抗及机制的研究进展 第一节 耐药相关蛋白的表达 第二节 肿瘤干细胞耐药相关的信号通路 第三节 肿瘤干细胞介导放化疗抵抗的其他相关机制 第四节 结语 第十章 肿瘤干细胞微转移 第一节 常见的肿瘤干细胞早期微转移 第二节 肿瘤干细胞早期微转移的机制 第三节 如何诊断肿瘤干细胞早期微转移 第十一章 肿瘤干细胞的早期诊断 第一节 肿瘤干细胞的早期诊断方法 第二节 血液系统肿瘤干细胞的早期诊断 第三节 实体瘤肿瘤干细胞的早期诊断 第四节 神经系统肿瘤干细胞的早期诊断 第十二章 造血系统肿瘤干细胞 第一节 白血病干细胞起源 第二节 白血病干细胞的生物学特性 第三节 各系白血病中的白血病干细胞 第四节 存在的问题和展望 第十三章 前列腺癌干细胞 第一节 人前列腺生物学、病变及病理学改变 第二节 前列腺上皮干细胞 第三节 前列腺癌干细胞 第四节 前列腺中干细胞示踪 第五节 PCSC对前列腺癌的临床影响 第十四章 黑色素瘤与黑色素瘤干细胞 第一节 黑色素干细胞与黑色素瘤干细胞 第二节 黑色素瘤干细胞的生物学特性 第三节 展望 第十五章 脑胶质瘤干细胞 第一节 脑神经干细胞研究 第二节 脑胶质瘤干细胞研究 第三节 脑神经干细胞和脑胶质瘤干细胞的关系 第四节 脑胶质瘤干细胞在神经系统肿瘤中的重要意义 第五节 展望 第十六章 卵巢癌肿瘤干细胞 第一节 卵巢结构和发育概况 第二节 卵巢肿瘤干细胞的发现和来源 第三节 卵巢癌干细胞分离鉴定、培养及标志研究 第十七章 乳腺癌干细胞 第一节 乳腺干细胞与乳腺癌干细胞 第二节 乳腺癌干细胞与信号转导异常 第十八章 癌干细胞研究面对的挑战与任务 第一节 全面认识癌干细胞生物学特性 第二节 建立特异性方法鉴定癌干细胞 第三节 癌干细胞靶向治疗的策略 参考文献
jiaoyang0706
人的内脏为什么不对称?
外表上看上去左右对称的人体,内脏却不是左右对称的。大多数人心脏位置偏左,肝脏在右侧,胃和脾在左侧,右肺有三叶而左肺只有两叶。但有极少数的人的内脏的左右是相反的。胚胎发育时是如何判断左右的呢?科学家们在逐渐揭开胚胎发育时判断方向的谜团。
内脏逆位的遗传呈现出了常染色体隐性遗传的特点,在不同族裔中出现的比例有区别。图片来源:Jonathan Rosen(文/CARL ZIMMER)1788年的一天,伦敦亨特利安医学院 (Hunterian School of Medicine) 的学生在解剖一具尸体的时候发现了一件令人震惊不已的事情。死者的生理结构和普通人的结构呈镜像对称——他的肝脏没有长在身体的右边而长在了左边,心脏曾在他的右侧跳动而非左侧。
学生们从来没有见过类似的事情,便急忙找来了他们的老师,苏格兰外科医师马修•贝利 (Matthew Baillie)。同样被震惊到了的贝利尔后写道:“这可真是连最有名望的解剖学家都难以见到的非凡景象。”
从对称发育成不对称
贝利的报告是第一份对于这种症状的详细描写,该症状尔后作为内脏逆位 (situs inversus) 渐渐为人所知,大概每两万人出现一例。贝利提出,如果医生们能够研究清楚这种奇怪的症状是如何形成的,那他们也将能得以理解我们的身体是如何区分左右的。
大约两个世纪过去了,人体内脏的左右生长之迷依旧令科学家们着迷。
“我知道什么靠左什么靠右,你知道什么靠左什么靠右,可是胚胎要怎么知道呢?” 英国医学研究理事会(Medical Research Council) 的发育生物学家多米尼克·P·诺里斯 (Dominic P. Norris) 这样问道。
如今诺里斯博士和其他科学家正着手解答这个问题。他们已经确切地找出了胚胎器官开始左右不对称发育的几个阶段。他们的研究除了能为我们解开这个古老的谜题以外,在相关领域或许还会有更多的建设。
导致内脏逆位的突变能引发包括先天性心脏缺陷等一系列严重病症。成功解读这些突变基因的作用效果或许能使许多相关症状的诊断和治疗成为可能。
“理解内脏发育的中轴是如何搭建起来的会为我们理解先天性心脏缺陷带来许多启发。” 普林斯顿的分子生物学家丽贝卡•伯丁 (Rebecca Burdine) 这样讲道。
我们的身体一开始是对称着发育的,左侧是右侧完美的镜像。“大约在六个星期左右人体内就会出现可观测到的左右不对称的迹象。”上个月刚刚在Open Biology期刊上发表了一篇关于左右不对称评论文章的新加坡分子与生物细胞研究院的苏蒂托•罗伊 (Sudipto Roy) 说。
心脏是第一个显现出可见不对称的器官。从简单的一个管状结构开始,它向左弯曲成环,再逐渐在两侧生长出不同的结构,形成泵血所需的心房心室与血管。
同时,其它器官也开始了移动。胃脏与肝脏分别顺时针地从胚胎的中线移开。大肠在其右侧生长出阑尾。右肺长出三片肺叶,左侧只长两片。
但这些可见的变化都是在胚胎发育出自己的左右差别相当一段时间之后才出现的。实验显示,在看着还是对称的时候,胚胎就开始向两侧生产不同的蛋白质了。
打破对称的关键点与Nodal蛋白
生物学家们已经找到了打破这个对称的关键部位:胚胎中线上一个叫做节点 (node) 的小凹陷。节点的内部有着数百根被称为纤毛 (cilia) 的细小的绒毛,它们以每秒10次的速率不断地回旋着。
这些旋转的纤毛朝头部的反方向倾斜开。这个倾斜对于它们为身体划分左右的能力来讲是至关重要的。最近纪念斯隆-凯特灵癌症中心 (Memorial Sloan-Kettering Cancer Center) 的凯瑟琳·V·安德森 (Kathryn V. Anderson) 和她的同事令节点内纤毛倾斜所须的基因失效。尔后他们在《发育学》(Development)期刊中报告道,基因失效后的变异导致了一些小鼠胚胎发育成了镜像对称的结构。
纤毛的倾斜是至关重要的,因为胚胎的周身被包围在一层薄薄的液体之中;如果这些纤毛是笔直的,它们会向各个方向推挤这液体,从而不让液体产生任何流动。“这就像搅拌器,”诺里斯博士讲道,“液体在里面一圈又一圈地流动。”倾斜的纤毛将液体从右向左地沿同一方向推挤。当科学家们将这种流动的方向逆转后,结果胚胎中器官的位置也发生了逆转。
要开始一个胚胎的正常发育所需要的只是一个非常微弱的向左的流动:日本大阪大学的科学家们发现仅仅两根转动的纤毛就足以胜任。
于是这就又产生了一个问题:“如果我们并不需要那么多纤毛的话,那么长这么多纤毛究竟是作什么用的?”就如诺里斯教授所言,“我们不知道。”
胚胎外的液体一流起来,只需三至四个小时就可以完成对于左右的划分。至于其间具体的变化步骤,科学家们也只是有一个粗略的了解。
在第一步中,液体流经节点、一直流到其左侧的边缘。边缘上环绕着不旋转的纤毛。它们通过某种方式对液流做出反应,可能直接弯曲,也可能由液流传递某些蛋白质。“我们还不知道其中详尽的细节,”诺里斯博士讲道,“不知道此刻这些细胞中的运作机制是怎么样的。”
先不管这些细节,总之节点边缘上的纤毛对液流做出了反应——有可能是通过释放扩散到附近细胞中去的钙原子实现的。这些细胞会因此释放出一种叫做Nodal的蛋白质。这种蛋白质会在胚胎的左侧扩散开来,并促使其它细胞也释放自己的Nodal蛋白质,从而使整个胚胎的左侧通过这种机制充满了Nodal蛋白质,而右侧则几乎没有。“Nodal蛋白质促生Nodal蛋白质,我们就这么起步了。”诺里斯博士讲道。
科学家们如今仍在研究着Nodal蛋白质是如何决定人体生理结构的。近年来,许多研究者们使用胚胎透明的斑马鱼取代了老鼠作为实验对象;斑马鱼胚胎中的细胞可由基因工程改造为会发光的,从而使器官的形成得以被观测到。
普林斯顿的伯丁博士研究胚胎细胞围绕器官迁移时Nodal蛋白质是如何促使斑马鱼心脏的生理结构成型的。“Nodal蛋白质似乎是直接指示左侧的细胞比右侧更快地移动。”
正如她和她的同事在《科学公共图书馆.遗传学》(PLoS Genetics)一月刊中报告的那样,左侧快速移动着的细胞会顺时针地拉扯整个心脏。由这个初始的扭动开始,心脏便逐渐发育出明显不同的左右两侧。
有些研究表示,这些早期的信号同样会影响脑部的发育。科学家们很久以前便认识到人类左右两侧的大脑有着重要的区别。比如右半脑在理解他人精神生活方面有着重要的作用;左半脑则对于注意力的集中来讲至关重要。其它脊椎动物也有着左右脑之间的差别,但这种不平衡的结构是如何起源的对我们仍然是一个谜。
“我认为在脊椎动物之中,我们了解最多的就是斑马鱼了。”范德堡大学 (Vanderbilt University) 的生物学家约书亚·T·盖姆斯 (Joshua T. Gamse) 说。盖姆斯博士和其他研究者发现,Nodal蛋白质会刺激鱼脑中一个小的部位从而使鱼脑的左右两侧的生长有所不同。这一点的不同其后会向外发散至大脑的其它部分。但至于人类和其它哺乳动物是否也有着类似的发育模式我们就不太清楚了。
不完全内脏逆位的麻烦
在着眼于这些生物信号的同时,科学家们同样也在研究着那些或许与左右不对称信号被干扰有关的发育异常。
内脏逆位,贝利在1788年所描述的这种内脏完全反转的症状大概是此类发育异常中最有戏剧性,却又是最无害的。
“身体的对称轴完全反转的人可以很正常的生活,如果不是你的医生发现你心脏位置有误的话,不会有人会注意到。”伯丁博士这样讲道。
这种完全的逆位症状要相对安全,因为所有的器官相对还排列正常。“你可以看看镜子中自己,看着很正常,”诺里斯博士讲道,“你不会因为反着看自己,就觉得自己变得不像人类了。”
真正的危险在于不完全的内脏逆位。——“当内脏间变得混乱,彼此之间变得互不相配的时候,”诺里斯教授这样形容道。
最令人担心的情况就是心脏受到影响。“如果你把心脏放错了位置,而其它器官在正确的位置,”伯丁博士讲道,“那几乎一定是致命。”
在其它案例中,心脏正确地长在了身体的左侧,但心脏内部的结构——瓣膜与心房心室——长错了位置。这种症状未必是直接致命的,但在以后的生活中会变得危险,需要复杂的手术才能将心脏的结构修改回来。
伯丁博士希望这些关于内脏左右逆位的研究日后可以带来能预测不易察觉的心脏缺陷的遗传测试。她还看好尝试用干细胞重建受损心脏的应用。
“这将不光是制造‘正确的’细胞,”她说,还需要将这些细胞放置在生物体三维结构中正确的位置上,并且给予它们正确的信号,让它们向着正确的方向生长发育。
“而在这些信号当中,”她说,“左右方向的信号是其中之一。”
不必紧张不安,身体不完全对称不是什么问题。
在人们的印象中,人体的左侧和右侧似乎都是对称的。因为谁都知道,如果通过鼻子到两腿中间作一条中轴线,那么,一双脚、两条腿、一双手、两只眼睛和一对耳朵等,就显得十分对称。除此之外,毛发的分布,人体表面的凹凸不平,也是左右对称的。鼻子和舌头等虽然是成单的,但是鼻子位于面部的中央,舌头居于口腔中间,而且它们的形状也是左右对称的。
其实,人体的左右两侧并不完全对称。一个小小的实验可以证明这一点:拿一张自己的正面照片,依正中线分成左右两半,然后分别按左半部和右半部复原,结果就会得到两个与原来不同的人像。
从外到里无一对称
仔细观察你周围的人,会发现人体中的不对称现象比比皆是。大部分人的额部,左侧比右侧稍大一些,所以右面颊略微向前突出。有些人的眼睛,一只大,一只小;一只双眼皮,一只单眼皮。有的人眉毛一高一低,耳朵一大一小。胎儿在母腹中,到第6个月就会自然地向右倾斜。人的脊柱在胸部多弯向右侧,在腰部常向左侧弯曲,因而左肩往往比较宽而高。大部分人的右手比左手长。在长度、重量和体积等方面,右腿也超过了左腿。怪不得蒙上眼睛在平地自然步行,过一段时间就会向左弯过去。当你穿上新买的鞋子走路时,往往感到一只脚的鞋子舒服合适,另只脚却并不那么舒服。原来,人的双脚一大一小,也不对称。
人的内脏器官也不对称。心脏的2/3在身体正中平面的左侧,1/3在右侧。左肺只有上、下两叶,右肺却分为上、中、下三叶。肝脏的大部分和胆囊在身体的右侧,胰腺的大部分和脾脏却在左侧。
器官的机能也不对称
人体不光形态构造不对称,各器官的机能也并不对称。60%的人,右眼的作用大于左眼。每个人都有两个鼻孔,左右鼻孔都能呼吸,但对人体的影响却是不同的。用右鼻孔呼吸时,大脑容易兴奋,神经处于紧张状态。因此,当你进行紧张的学习和工作时,往往用右鼻孔呼吸。左鼻孔正好相反,它是在轻松、安宁时进行呼吸的。
美国心理学家沃纳.伍尔夫经过多年研究,发现人脸两侧的表情不完全一样。他认为,右侧脸是“开放性”的,能表达一个人想要表达的感情;而左侧脸则是“闭关性”的,他流露出下意识的感情,因而左侧脸表达的感情是真实的。
美国威斯康星大学的凯.史密斯教授发现,人在讲话时,嘴唇、舌头和两颊的动作,几乎都是半边脸动得特别积极。美国人习惯使用右侧脸。而有音乐才能的人,却习惯于用左侧脸。研究证明,不管是贝多芬、舒伯特、柴可夫斯基,还是现代歌唱家、演奏家,几乎无一例外。
机能不对称最明显的例子,莫过于左右手的功能了。大多数人习惯用右手,他们用右手写字、吃饭、干活。也有少数人爱用左手干活,他们的左手似乎比右手更重要,更起作用,通常称他们为左撇子。
对称,能给人以一种圆满、匀称的美感。
美的“三要素”是简单、对称、和谐。
匀称的人体暗合着黄金律。从外表上看起来,复杂的人体是如此简单,而外表简单的人体,却又处处对称。你说人体美不美?
据说,“对称”一词最早出现在公元前5世纪。古希腊著名雕塑家波利克里托斯在一本讨论雕塑中的理想比例关系的著作中就提出来了。
自然界处处显示出形象对称性,像人体,乃至鸟、兽、鱼、虫,大都是左右对称。人体的双目、双耳、双手、双足,惟妙惟肖,左右两半部十分对称。
除了左右对称外,还有所谓“轴对称”、“中心对称”等。肚脐被称为人体体表的“黄金分割点”,是重要的体表标志。如果没有这个标志,要把人体分成对称的两半就困难多了。
然而,人体也是一个复杂的几何图形,有点、线、面、三角形、圆形等。在人体的细节上,并非绝对对称。比如,有的人脸一半大、一半小;有人的眼睛一侧大,一测小;有人的眉毛,一高一低,一平一翘;有人的耳朵,一大一小,一尖一圆。有的人尽管看上去似乎左右很匀称,但留心观察,仍可找到若干不对称之处。所以,人体的这种不对称现象比比皆是,又千变万化。
其实,不但从头到脚的外表形态是这样,而且从外到里、从静态到动态,也都是如此。
首先看一下头面部。
头和面部的左、右侧发育,绝大多数是不一致的。如果任取一张脸部的正面照片,依正中线分成左右两半,然后分别按其左半部和右半部复原,结果可以得到两个完全不同于原来的人像。
在头面部的不对称现象中,有人左侧较为发达,也有人右侧较为发达。虽然两侧的差别并不大,但毕竟是有差异的。
国外有人调查,其左侧较为发达的有外耳、眼及鼻唇沟(即嘴巴两侧斜上方的两条较深的皱纹);而右侧较为发达的有脸、鼻孔。
由于右脸往往比左脸大,因此,人的面部中线常偏向左侧,鼻尖也常歪向左方。同样,嘴巴的两角,往往右高大低。此外,头顶部的发旋,约有80%是向右的顺时针方向。
再看躯干、四肢部。
脊柱在胸部多弯向右侧;在腰部,则常弯向左侧。随之,左肩往往较高,且似乎较宽。
根据测量,人体上肢左右两侧长度相等的,仅占18%;大部分人(占75%)是右侧比左侧长;剩下的7%,则相反,右侧比左侧短。
骨骼的测量同样如此:右侧骨骼较左侧骨骼的直径大并较粗壮。下肢与上肢类似,无论在长度、重量及体积等方面,右侧常常比左侧略大。然而,两侧下肢的差别不如上肢明显。约有52%的人的右侧下肢占优势;15%的人的左侧下肢占优势;两侧相等的,占33%。至于躯干和上、下肢的肌肉,一般都是右侧较为发达。
人体的内脏器官,同样普遍存在左右不对称的现象,并且更为明显。
解剖学家早已指出,人都是偏心的。心脏的2/3居于身体正中平面左侧,l/3在右侧;右肺分为上、中、下三叶,左肺则分上、下两叶;右肺较左肺宽而短,且右肺重于左肺;右肺与左肺的重量之比,男子为10:9女子则为8:7;肝脏的大部分及胆囊在身体右侧;胰腺的大部分及脾脏在左侧;胃在中等程度充盈时,大部分位于身体左侧。胃的上缘较短,叫胃小弯,凹向右上方;胃的下缘较长,叫胃大弯,凸向左下方;两只肾脏,左肾细长,右占宽短,且左肾较右肾梢重、位置略高;左、右两个大脑半球也不完全对称。大脑半球前上方的额叶,右侧较左侧略大;而后下方的枕叶,则左侧较右侧稍大。此外,男子的睾丸,左侧常比右侧略大,且在阴囊中的位置较低,约低1厘米。
既然人体的外表形态和内部构造均存在不对称现象,那么,与此相应的功能方面,同样存在不对称,最明显的例子是手。大多数人是右利手,日常生活中习惯使用右手。少数人是左利手(俗称左撇子)和混合利手。
同样,下肢功能的不对称也有很多表现。例如,多数人习惯用右脚踢球,用左脚迈出第一步;在跷二郎腿时,往往用左腿作支柱;两腿安静站立时,总是一侧膝关节过伸,作为支撑腿,另一侧稍屈作为支架,然后轮替交换,即所谓不对称站立。
再如,当你用放大镜或显微镜,或通过一小孔、裂缝观看某一物体时,多数人喜欢用右眼。由此可见,人的大脑两半球功能也是不对称的,往往是左侧占据优势,即称为优势半球。
研究这些不对称现象,对于医学、艺术和人类学都具有很大价值。只有通过对正常人的不对称现象研究,才能显示出人体的异常不对称:哪些是先天性变异或畸形;哪些是后天性的病理改变。这对临床医学诊断将有很大帮助。像有的人的嘴巴明显歪向左侧,这就不是正常的不对称了,而是由于他的右侧面神经瘫痪,从而形成该侧面部肌肉松弛,加之健康侧(左侧)面部肌肉的收缩,结果把嘴巴拉向左侧,造成了歪嘴巴。又如,一侧短肢、一侧多囊肾,这也不是正常的不对称,而是属于一种畸形。
同时,绘画、雕塑和人类学的人像复原等,如果不具备正常的不对称知识,那就难以想像能创作出自然逼真、栩栩如生的作品来。
总的来说,人体是对称的,不对称的只是一些细微的差别,一般都是正常的现象。左、右两侧的差别,有的明显,有的不明显。因此,当发现自己身上有某些不对称时,或看到别人身上存在不对称时,不必大惊小怪
相关资料与图片均来自于网络:通过百度搜索
相关参考文献来源如下:
果壳编译自:《纽约时报》,Growing left,growing right
天涯问答:
一janice一
从外观看,人在大体上都是左右对称的,显然,这种外观对称应该是美感的一个必要条件,但是,人的这种对称美,却没做到表里如一,因为人的内脏就不是左右对称的。例如心脏、肝脏等分布在体内的一侧,而肺尽管同时分布在两边,但仍然左右不对称,只有肾、卵巢等少数器官大体上才是左右对称分布的。那么这种不对称是怎么产生的呢?
【追根溯源-受精卵】
如果考虑到人从受精卵开始的发育过程,那么这个问题就显得更加奇怪了。因为受精卵本身是一个完全对称的球状体,然后它对称地连续进行一分为二的分裂,形成一团球形的细胞聚合体。那么是在什么时候,胚胎在其外表保持左右对称的情况下,其内部开始出现左右不对称的呢?产生这种不对称的机制又是怎样的呢?
要得到这个问题的答案,只有一步一步地追溯胚胎从单个受精卵,发育到出现不对称形态为止的整个过程。由于在最初的受精卵分裂阶段,子代细胞基本保持相互一致,也就是说,子代细胞无论是形态、结构、还是组分,特别是其中所包含的蛋白质种类都是一样的。我们知道,生命的基本功能构件就是蛋白质,如果两个细胞有差异,那么其中所包含的蛋白质一定有种类上的差异。而一个细胞里面所包含的蛋白质,完全是由其相应的基因所包含的DNA序列信息,被细胞内部的蛋白质加工厂阅读,然后再翻译为蛋白质的氨基酸序列信息,从而最终使得基因获得表达而生产出来。那么蛋白质种类的差异,肯定是源于基因表达的差异,也就是说,如果两个子代细胞,它们进行表达的基因有不同,就会导致其蛋白质工厂所生产的蛋白质种类不同,从而决定了它们的结构和功能出现歧异。
显然,对于一个开始完全球对称的胚胎来说,肯定存在一个关键性的发育步骤,使得该胚胎左右两边的子代细胞、出现基因表达的差异,从而进一步使得整个胚胎的左右出现形态和结构的不对称。所以研究这个问题的一个思路,就是从早期胚胎仍然处于左右对称的时期开始,监测左右两边细胞的用来装配蛋白质的mRNA序列以及相应蛋白质产物,看何时出现差异,然后再顺藤摸瓜找到导致这种差异的源头基因是什么。 【追根溯源-基因】
目前研究人员已经找到了这样一些基因,它们只是在早期胚胎的某一边获得了有效表达,然后它们所编码的蛋白质就能够充当关键的信号分子,诱导该边的胚胎生长出与其对称位置不同的形态结构来。研究人员在鸡胚胎的发育过程当中,发现了第一个非对称表达的基因shh,它所编码表达的蛋白质就是一种非常重要的信号蛋白分子。随后,又陆续在鸡胚胎里面发现了另外7个基因,它们都参与了鸡胚胎的非对称发育。更重要的进展是,发现了这8个基因及其所编码的蛋白分子具有环环相扣的关联性,可以说它们的作用是一环扣一环。而鸡胚胎的左右不对称发育正是由这一系列基因及其编码蛋白相互作用与调控的结果。研究人员通过人为干预这些基因的启动程序,就能够有效地改变心脏生长的位置或朝向。 此外,还有其它更多的基因也都参与了这个非对称发育过程。 【其它动物是否有称在这种不对称?】
除了鸡之外,在其他脊椎动物身上是不是也存在类似的非对称发育控制机制呢?目前已经有研究人员在老鼠和两栖类动物的胚胎发育过程中,都发现了类似的非对称发育调控机制。因此,我们应该能够估计得到,这样的机制一定也存在于人类。不过,即使我们已经能够追溯到基因,也还只是部分地回答了这个问题。如果非要打破砂锅问到底的话,最早的基因非对称表达又是谁下的命令呢?我们还是很难说清楚,究竟是由什么决定了心脏非得要生长在左边,这个问题还等着人类继续探索与研究。
相关资料与图片均来自于网络:通过百度搜索
相关参考来源如下:
坚吃不懈1208
从外观看,人在大体上都是左右对称的,显然,这种外观对称应该是美感的一个必要条件,但是,人的这种对称美,却没做到表里如一,因为人的内脏就不是左右对称的。例如心脏、肝脏等分布在体内的一侧,而肺尽管同时分布在两边,但仍然左右不对称,只有肾、卵巢等少数器官大体上才是左右对称分布的。那么这种不对称是怎么产生的呢?【追根溯源-受精卵】如果考虑到人从受精卵开始的发育过程,那么这个问题就显得更加奇怪了。因为受精卵本身是一个完全对称的球状体,然后它对称地连续进行一分为二的分裂,形成一团球形的细胞聚合体。那么是在什么时候,胚胎在其外表保持左右对称的情况下,其内部开始出现左右不对称的呢?产生这种不对称的机制又是怎样的呢?要得到这个问题的答案,只有一步一步地追溯胚胎从单个受精卵,发育到出现不对称形态为止的整个过程。由于在最初的受精卵分裂阶段,子代细胞基本保持相互一致,也就是说,子代细胞无论是形态、结构、还是组分,特别是其中所包含的蛋白质种类都是一样的。我们知道,生命的基本功能构件就是蛋白质,如果两个细胞有差异,那么其中所包含的蛋白质一定有种类上的差异。而一个细胞里面所包含的蛋白质,完全是由其相应的基因所包含的DNA序列信息,被细胞内部的蛋白质加工厂阅读,然后再翻译为蛋白质的氨基酸序列信息,从而最终使得基因获得表达而生产出来。那么蛋白质种类的差异,肯定是源于基因表达的差异,也就是说,如果两个子代细胞,它们进行表达的基因有不同,就会导致其蛋白质工厂所生产的蛋白质种类不同,从而决定了它们的结构和功能出现歧异。
引用硕士论文应按照参考文献中硕士论文的格式进行标注。 根据国家标准:GB/T 7714-2015的规定,参考文献引用时硕士论文的格式为: [序号]作者. 文档参
学位论文参考文献格式范例如下: 1、期刊类:【格式】[序号]作者.篇名[J].刊名,出版年份,卷号(期号):起止页码。 2、专著类:【格式】[序号]作者.书名[
目前图书引用参考文献主要可以从中国知网或者百度学术引用查询! 第一种 中国知网 登陆知网后,输入你的参考文献,并且在左侧框框里勾选,勾选后点击“导出/参考文献
参考文献是论文的一个重要组成部分,不管学历高低,论文长短都存在。为了让论文有据可依,论文正文部分都会引用参考文献来增强说服力,在引用参考文献时,通常会用中括号或
论文参考文献的正确格式一般包括:书写格式、书写技巧、国家标准、文献标注、参考示例。 参考文献是在学术研究过程中,对某一著作或论文的整体的参考或借鉴。征引过的文献