Magic侠女
梯度折射率减反射光伏玻璃探究
近年来,太阳能电池的大规模使用使减反射光伏玻璃的需求也在不断增加,光伏玻璃减反射技术的研究也成为了光伏领域的一个主要研究热点。以下是我为您整理的梯度折射率减反射光伏玻璃探究论文,希望能对您有所帮助。
摘要: 本文主要以TiO2薄膜为对象,对其研究现状和薄膜的制备方法进行介绍,并在此基础上探讨对制备方法的改进和完善,以此来进一步促进我国能源的有效利用。
关键词: 梯度折射率;减反射;光伏玻璃
引言
随着我国社会经济的飞速发展,能源危机问题越来越严重,在这种形势下,太阳能作为一项取之不尽用之不竭的能源,得到了世界各国的高度重视。近年来,太阳能电池的大规模使用使减反射光伏玻璃的需求也在不断增加,光伏玻璃减反射技术的研究也成为了光伏领域的一个主要研究热点。本文主要对TiO2薄膜的研究现状和制备方法进行介绍,并在此基础上提出相应的改进措施,以此来进一步促进我国能源的有效利用。
1、TiO2薄膜研究现状
TiO2薄膜相变特性
在当前太阳能电池陷光薄膜应用领域中,TiO2薄膜凭借着自身光学性能好、化学稳定性高和易于沉积等诸多优势得到了广泛应用,甚至在当前一部分商业电池中,也有很多组件中采用TiO2薄膜来作为减反射层。正是因为TiO2薄膜具有以上良好特性,所以在实际应用过程中,并不存在设备门槛问题,而且还能够避免工艺中很多酸碱的侵蚀,确保整体质量。同时,利用TiO2薄膜作为减反射层,还不会出现因为减反层材料变化而需要对工艺或设备进行调整的问题。
目前,TiO2薄膜有锐钛矿相、金红石相和板钛矿相三种相,每一种类型的相取决于沉积温度的高低。一般来说,沉积温度在350℃-700℃范围内所形成为薄膜为锐钛矿相,700℃以上沉积温度所形成的薄膜则为金红石相,至于板钛矿相则在TiO2薄膜中比较少见。其中,锐钛矿相晶体结构是八面体共边组成,光学带隙约为,折射率为。而金红石相晶体结构则是由八面体共顶点组成,光学带隙为,折射率为,并且具有吸收系数大、稳定性高等特点。
非金属元素掺杂
等采用脉冲激光沉积法,以金属钛为靶材,O2/N2的混合气体作为反应气体,沉积氮掺杂的TiO2薄膜。通过紫外-可见光谱及椭圆偏振光谱得到薄膜的光学性能及膜厚等性质,计算出不同基底温度、不同氮掺杂量TiO2薄膜的带隙和消光系数。实验结果表明,掺杂得到TiOxN2-x化合物,氮的掺入可以使薄膜的禁带宽度降低至,有可能提高光催化性能。
江洪湖等用射频磁控溅射方法在玻璃衬底上,控制氩气和氮气的流量比,生长出不同氮含量的TiO2薄膜,进而研究氮掺杂对TiO2薄膜的折射率、透过率、吸收光谱和光学禁带宽度的影响,寻找最佳的掺氮量,通过掺氮来提高TiO2薄膜对可见光的敏感度。研究结果表明适量的掺杂可以提高薄膜的折射率,可以有效地减小TiO2薄膜的光学禁带宽度,氮掺杂的TiO2薄膜的光学吸收边发生了明显的红移现象。由于氮的掺杂,在TiO2的禁带中形成了一个孤立的能态 (N2p),这个能态就位于TiO2的价带之上,这使氮掺杂的TiO2薄膜在可见光吸收带中出现一个肩峰。
2、TiO2的梯度折射薄膜制备方法
溶胶-凝胶法制备TiO2的梯度折射率低反射薄膜
溶胶-凝胶法是制备梯度折射率薄膜常用的一种方法,这种方法首先是将金属醇盐与水、溶剂以及催化剂等融合在一起,通过化学反应生成溶胶,通常情况下,这些金属醇盐主要包括钛酸丁酯、钛酸乙酯和钛酸异丙酯等。然后利用旋涂法和提拉法等技术将溶胶在玻璃上形成凝胶膜,对于薄膜厚度的控制,可以通过调整与溶胶相关的因素如粘度、催化剂、溶剂以及浸渍提升速率等来完成。最后通过烧结工艺去除膜中有机物,最终形成梯度折射薄膜。这种梯度折射薄膜制备方法不仅操作简单,制备成本低,而且沉积温度低,均匀度高。一般来说,利用该方法制备出的TiO2薄膜为网络结构,无明显微孔缺陷,致密性和均匀性都很好,经过热处理之后,薄膜的厚度通常在80nm左右,这也可以作为最终获得的梯度TiO2薄膜的厚度。但是这种方法也有不足之处,比如说有机物挥发会对薄膜产生C元素污染等。为了将以上问题有效解决,Chen等尝试利用钛酸异丙酯作为前驱体来对梯度折射薄膜进行制备,在制备过程中,热处理温度得到了有效提高,有效避免了薄膜产生C元素污染这一问题。但是,溶胶-凝胶法目前还存在一些有待完善的地方,比如说该方法无法对梯度折射薄膜的折射率进行有效调控,同时,利用该方法所制备出的梯度折射薄膜成品厚度均匀性差,在制备减反膜方面等有一定的限制。因此,溶胶-凝胶法还有待进一步完善。
化学气相沉积法
化学气相沉积法也是当前TiO2梯度折射薄膜制备的一个主要方法之一,这种方法主要是利用加热和光辐射等各种能源,将处于反应器内的化学物质通过化学反应形成固态沉积物的一种技术。按照不同标准,化学气相沉积法还可以分为不同类型。这种方法的优点在于,沉积速率快,成膜质量高等。同时,也存在不足之处,比如说沉积温度较高,导致其应用范围在一定程度上受到了限制。此外,该方法可以通过控制成分来改变薄膜折射率也是存在一定限制的。
物理气相沉积法
物理气相沉积法主要指的是在真空条件下,通过激光、热蒸发以及溅射等方法,将固体材料源气化,以此来生成气态的粒子团或失去电子的等离子体。在较压下经过反应气体沉积在衬底表面形成具有某些功能特性的薄膜。就目前物理气相沉积法的分类来看,大致可以将其分为两种类型,即蒸发法和溅射沉积法。利用蒸发法制备薄膜的时候,可以通过降低余气体分压和提高沉积速率的方法来提高薄膜纯度,同时,沉积速度和背底真空度的变化也会给薄膜纯度带来影响,具体参数如表1 所示。
与以上两种制备方法相比,物理气相沉积法具有沉积温度低、应用范围广、衬底粘附性强以及制备方法等优点。该制备方法的缺点则是溅射过程中绕射性差,不宜作为复杂表面的镀膜。利用物理气相沉积法进行梯度折射薄膜制备,主要有两种方式,一种是倾斜沉积;另一种是多角度倾斜沉积,无论采用哪一种方法,均能够使梯度折射薄膜呈现出较好的特性,使其满足太阳能电池的.使用需求。
3、结语
综上所述,随着我国社会经济的飞速发展,能源问题也将被提到一个新的高度,太阳能作为未来社会经济发展中的一项主要能源,不仅需要其具有较高的转换效率,而且还要实现成本的降低。太阳能电池的大规模必定会在一定程度上使增加反射光伏玻璃的需求。TiO2薄膜作为一种重要的半导体光催化材料,在太阳能源的充分利用中占据重要的位置。因此,了解当前TiO2薄膜的研究现状和制备方法,并在此基础上对其制备技术进行不断改进与完善是非常重要的。
拓展阅读
梯度折射率材料
在光学系统的设计中主要通过透镜的形状、厚度来成像,并利用各种透镜的组合来优化光学性能,从而使折射率也相应地呈连续变化。它也可简称为梯折材料。
简介
在传统的光学系统中,各种光学元件所用的材料都是均质的,每个元件内部各处的折射率为常数。在光学系统的设计中主要通过透镜的形状、厚度来成像,并利用各种透镜的组合来优化光学性能。梯度折射率材料则是一种非均质材料,它的组分和结构在材料内部按一定规律连续变化,从而使折射率也相应地呈连续变化。它也可简称为梯折材料。
一、梯度折射材料的折射率梯度类型成像原理
梯度折射材料按折射梯度基本上可分为三种类型:径向梯度折射材料、轴向梯度折射材料、球向梯度折射材料。
(一)径向梯度折射材料及其成像原理
径向梯度折射材料是圆棒状的。它的折射率沿垂直于光轴的半径从中心到边缘连续变化,等折射率面是以光轴为对称轴的圆柱面。沿垂直于光轴方向截取一定长度的梯度折射率棒两端加工成平面,就制成了一个梯度折射率透镜。光线在镜内以正弦曲线连续传播,如果折射率从轴心到边缘连续降低,就是自聚焦透镜,相当于普通凸透镜。如果折射率从轴心到边缘连续增加,就是自发散射透镜相当于凹透镜。4-1为成像原理图。P1、P2、P3、P4分别为实物,Q1、Q2、Q3、Q4分别为像,z为轴向,r为径向,H为主点,F为焦点,z0为棒长,h为棒端面至主平面距离,f为焦距,l和l´分别为物距和像距,P=2π/ A,A为折射率分布稀疏。有以下关系式中M――倍率。
理想径向梯度折射率的分布
n(r) =n0sech(gr)
式中g—常数;
n0—棒光轴处的折射率;r――离开光轴的距离。
20世纪60年代,虽然对径向梯度折射率的分布形式又作了许多研究,但目前使用比较普遍的仍然是抛物线性的分布式,并作为径向梯度折射率棒的设计的基础。
(二)轴向梯度折射材料及其成像原理
轴向梯度折射材料的折射率沿圆柱形材料的轴向呈梯度变化
式中:n(z)—沿轴向z处的折射率
n(0)—一端面处折射率
分布系数
z—z轴处任一点离端面距离
β—分布指数
(三)球向梯度折射材料及其成像原理
球向梯度折射材料的折射率对称于球内某点而分布,这个对称中心可以是球心,也可不是。它的等折射率面是同心球面。Maxwell在1854年提出球面梯度透镜的设想,即鱼眼透镜。
式中 no、a——常数:
r——离开球心的距离。
这种球透镜只有在它内部或表面的点能够成像,因而,难以制作和应用。但至今仍有理论意义;其后曾提出了Lunebery球透镜的折射率分布式,要求球表面的折射率与周围介质(如空气)的折射率相同,因而也无法实现。1985年祝颂来等人报导了一种直径约5mm的玻璃梯度折射率球,1986年Koike等人报导了直径为o.o5—3mm的高分子梯度折射率球,他们都提出折射率分布可近似于抛物线分布,这和径向梯度折射率材料的要求基本相同。
爱饭饭大吃货
太阳能电池的工作原理-经典教程-可持续发展 来源:互联网 作者: 发布时间:2007-02-27 半导体的内光电效应 当光照射到半导体上时,光子将能量提供给电子,电子将跃迁到更高的能态,在这些电子中,作为实际使用的光电器件里可利用的电子有:(1)价带电子;(2)自由电子或空穴(Free Carrier);(3)存在于杂质能级上的电子。太阳电池可利用的电子主要是价带电子。由价带电子得到光的能量跃迁到导带的过程决定的光的吸收称为本征或固有吸收。太阳电池能量转换的基础是结的光生伏特效应。当光照射到pn结上时,产生电子一空穴对,在半导体内部结附近生成的载流子没有被复合而到达空间电荷区,受内建电场的吸引,电子流入n区,空穴流入p区,结果使n区储存了过剩的电子,p区有过剩的空穴。它们在pn结附近形成与势垒方向相反的光生电场。光生电场除了部分抵消势垒电场的作用外,还使p区带正电,N区带负电,在N区和P区之间的薄层就产生电动势,这就是光生伏特效应。此时,如果将外电路短路,则外电路中就有与入射光能量成正比的光电流流过,这个电流称作短路电流,另一方面,若将PN结两端开路,则由于电子和空穴分别流入N区和P区,使N区的费米能级比P区的费米能级高,在这两个费米能级之间就产生了电位差VOC。可以测得这个值,并称为开路电压。由于此时结处于正向偏置,因此,上述短路光电流和二极管的正向电流相等,并由此可以决定VOC的值。太阳电池的能量转换过程太阳电池是将太阳能直接转换成电能的器件。它的基本构造是由半导体的PN结组成。此外,异质结、肖特基势垒等也可以得到较好的光电转换效率。本节以最普通的硅PN结太阳电池为例,详细地观察光能转换成电能的情况。首先研究使太阳电池工作时,在外部观测到的特性。图表示了无光照时典型的电流电压特性(暗电流)。当太阳光照射到这个太阳电池上时,将有和暗电流方向相反的光电流Iph流过。图 无光照及光照时电流-电压特性当给太阳电池连结负载R,并用太阳光照射时,则负载上的电流Im和电压Vm将由图中有光照时的电流一电压特性曲线与V=-IR表示的直线的交点来确定。此时负载上有Pout=RI2m的*Gong*率消耗,它清楚地表明正在进行着光电能量的转换。通过调整负载的大小,可以在一个最佳的工作点上得到最大输出*Gong*率。输出*Gong*率(电能)与输入*Gong*率(光能)之比称为太阳电池的能量转换效率。 [NextPage] 下面我们把目光转到太阳电池的内部,详细研究能量转换过程。太阳电池由硅pn结构成,在表面及背面形成无整流特性的欧姆接触。并假设除负载电阻R外,电路中无其它电阻成分。当具有hν(eV)(hν>Eg,Eg为硅的禁带宽度)能量的光子照射在太阳电池上时,产生电子―空穴对。由于光子的能量比硅的禁带宽度大,因此电子被激发到比导带底还高的能级处。对于p型硅来说,少数载流子浓度np极小(一般小于105/cm),导带的能级几乎都是空的,因此电子又马上落在导带底。这时电子及空穴将总的hν - Eg(ev)的多余能量以声子(晶格振动)的形式传给晶格。落到导带底的电子有的向表面或结扩散,有的在半导体内部或表面复合而消失了。但有一部分到达结的载流子,受结处的内建电场加速而流入n型硅中。在n型硅中,由于电子是多数载流子,流入的电子按介电驰豫时间的顺序传播,同时为满足n型硅内的载流子电中性条件,与流入的电子相同数目的电子从连接n型硅的电极流出。这时,电子失去相当于空间电荷区的电位高度及导带底和费米能级之间电位差的能量。设负载电阻上每秒每立方厘米流入N个电子,则加在负载电阻上的电压V=QNr=IR表示。由于电路中无电源,电压V=IR实际加在太阳电池的结上,即结处于正向偏置。一旦结处于正向偏置时,二极管电流Id=I0[exp(qV/nkT)-1]朝着与光激发产生的载流子形成的光电流Iph相反的方向流动,因而流入负载电阻的电流值为 ()在负载电阻上,一个电子失去一个qV的能量,即等于光子能量hν转换成电能qV。流过负载电阻的电子到达p型硅表面电极处,在P型硅中成为过剩载流子,于是和被扫出来的空穴复合,形成光电流太阳电池的基本特性短路电流太阳电池的短路电流等于其光生电流。分析短路电流的最方便的方*fa*是将太阳光谱划分成许多段,每一段只有很窄的波长范围,并找出每一段光谱所对应的电流,电池的总短路电流是全部光谱段贡献的总和: ()式中 λ0 ――本征吸收波长限 R(λ)――表面反射率 F(λ)――太阳光谱中波长为l~l+dl间隔内的光子数。F(l)的值很大的程度上依赖于太阳天顶角。作为表示F(l)分布的参数是AM(AirMass)。AM表示入射到地球大气的太阳直射光所通过的路程长度,定义为 ()式中: b0――标准大气压b――测定时的大气压Z――太阳天顶距离一般情况下,b » b0,例如,AM1相当于太阳在天顶位置时的情况,AM2相当于太阳高度角为30°时的情况,AM0则表示在宇宙空间中的分布在实际的半导体表面的反射率与入射光的波长有关,一般为30~50%。为防止表面的反射,在半导体表面制备折射率介于半导体和空气折射率之间的透明薄膜层。这个薄膜层称为减反射膜(Antireflective coating)。设半导体、减反射膜、空气的折射率分别为n2、n1、n0,减反射膜厚度为d1,则反射率R为 ()式中: r1=(n0 - n1)/(n0 + n1) r2=(n1 - n2)/(n1 + n2) θ=2πn1d1/λ λ-波长显然,减反射膜的厚度d1为1/4波长时,R为最小。即 时 (λ=λ') ()一般在太阳光谱的峰值波长处,使得R变为最小,以此来决定d1的值。以硅电池为例,因为在可见光至红外光范围内,硅的折射率为n2 = ,使式()为零,则n1的值( , n0=1)为£ n1£。设l'=4800埃,则600埃£d1£667埃,满足这些条件的材料一般可采用一氧化硅,在中心波长处,反射率达到1%左右。由于制备了减反射膜,短路电流可以增加30~40%。此外,采用的减反射膜SiO2(n1»)、Al2O3(n1»)、Sb2O3(n1»)、TiO2、Ta2O5(n1»)。将具有不同折射率的氧化膜重叠二层,在满足一定的条件下,就可以在更宽的的波长范围内减少折射率。此外也可以将表面加工成棱锥体状的方*fa*,来防止表面反射
虾子王0001
[1-1] 师宇腾.太阳能光伏阵列模拟器综述.电源技术.[1-2] 董振利.基于DSP与dsPIC的数字式太阳能电池阵列模拟器研究[D].合肥:合肥工业大学,2007[1-3] 刘志强.10kW光伏并网逆变器的研制[D].北京:北方工业大学,2011[1-4] 赵玉文.太阳能光伏技术的发展概况.第五届全国光伏技术学术研讨会论文集.1998 [1-5] BennerJP,KazmerskiL. Photovoltaicsgaininggreatervisibility. SPeetrum,(9):34-42 [1-6] 余蜜.光伏发电并网与并联关键技术研究:[博士学位论文].武汉:华中科技大学,2009[1-7] 许颇.基于源型逆变器的光伏并网发电系统的研究:[博士学位论文].合肥:合肥工业大学,2006[1-8] 林安中,王斯成.国内外太阳电池和光伏发电的进展与前景.太阳能学报,增刊. 1999:68-74[1-9] 汪海宁.光伏并网功率调节系统及其控制的研究:[博士学位论文].合肥:合肥工业大学,2005[1-10] 周德佳.太阳能光伏发电技术现状及其发展,电气应用. 2007[1-11] 曹伟.基于DSP的数字光伏模拟器研究[D].合肥:合肥工业大学,2009.[1-12] 韩珏.太阳能电池阵列模拟器的研究和设计[D].杭州:浙江大学,2006.[1-13] OLILLA J. A medium power PV-arraysimulator with a robust control strategy. Tampere,Finland: Tampere Universityof Technology, 1995, IEEE: 40. [1-14] 韩朋乐.数字式光伏电池阵列模拟器的研究与设计[D].成都:电子科技大学,2009.[2-1] 董密.太阳能光伏并网发电系统的优化设计与控制策略研究:[博士学位论文]. 长沙:中南大学,2007.[2-2] 吴忠军,刘国海,廖志凌.硅太阳电池工程用数学模型参数的优化设计.电源技术. 2007.[2-3] 苏建徽,余世杰,赵为.硅太阳电池工程用数学模型.太阳能学报. 2001.[2-4] 裴云庆.开关稳压电源的设计和应用[M].北京:机械工业出版社,2010.[2-5] 孙孝金.太阳能电池阵列模拟器的研究与设计[D].济南:山东大学,2009.[2-6] 朱丽.一个光伏阵列模拟器的设计[D].合肥:合肥工业大学,2007.[2-7] 刘万明.数字式太阳能阵列模拟器的研究[D].成都:电子科技大学,2009.[2-8] 谢文涛.新型光伏阵列模拟器的研究与设计[D].杭州:浙江大学,2007.[2-9] 李欣.数字式光伏阵列模拟器的研制[D].杭州:浙江大学,2007.[2-10] 杜柯.基于DSP的光伏电池数字模拟系统研究[D].武汉:华中科技大学,2006.[2-11] 陈亚爱.开关变换器控制技术综述[J].电器应用,2008,27(4):4-10.[3-1] Cho J G,Sabate J A,Zero-voltageZero-current Switching Full-bridge PWM converter for High Power Applications,IEEETrans 0n Power Electronics,1996 [3-2] Cho J G,Jeong C Y,Lee FC,Zero-voltage and Zero-current switching Full—bridge PWM Convener UsingSecondary Active Clamp,IEEE Trans 0n Power Electronics,l998 [3-3] Kim E S,Joe K Y,Park S G,An ImprovedSoft Switching PWM FB DC/DC Converter Using the Modified Energy Recovery Snubber,IEEE AppliedPower Electronics Conference and exposition,2000 [3-4] Ruan XB,Yall Y G,An Improved Phaseshifted Zero-voltage Zero-current Switching PWM Converter,IEEE Applied PowerElectronics Conference and exposition,1998 [3-5] Cho J G, Back J W, Jeong C Y, NovelZero-voltage and zero-current-switching(ZVZCS) Full Bridge PWM Converter Usinga Simple Auxiliary Circuit,IEEE Applied Power Electronics Conference andexposition,l998
水热法生长二氧化钛纳晶及在染料敏化太阳能电池板的应用1 引言1991 年瑞士学者Gratzel 等在Nature 上发表文章,提出了一种新型的以染料敏化二氧化钛
太阳能热发电是指将太阳光聚集并将其转化为工作流体的高,温热能,然后通过常规的热机或其它发电技术将其转换成电能的技术。下面是我整理的太阳能热发电技术论文,希望你能
光电材料 光电子器件 光通信等等
嘿嘿,来看看顶起...
唔知道啊,问百度哥哥。