zhzhohohzh
CVPR的workshop审稿还是很严格的。虽然reviewers和主会不是一套班子,但也都是来自Google/Facebook的顶级学者。难度上,CVPR workshop=B类主会>C类主会。
CVPR录用标准
CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。
通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。
第一届CVPR会议于1983年在华盛顿由金出武雄和Dana Ballard举办,此后每年都在美国本土举行。会议一般在六月举行,而举办地通常情况下是在美国的西部,中部和东部地区之间循环。
例如,2013年该会议在波特兰召开。而2014年有超过1900人参加了在哥伦比亚举办的会议。而接下来的2015,2016和2017年,该会议分别于波士顿,拉斯维加斯和夏威夷举办。
CVPR有着较为严苛的录用标准,会议整体的录取率通常不超过30%,而口头报告的论文比例更是不高于5%。
而会议的组织方是一个循环的志愿群体,通常在某次会议召开的三年之前通过遴选产生。CVPR的审稿一般是双盲的,也就是说会议的审稿与投稿方均不知道对方的信息。通常某一篇论文需要由三位审稿者进行审读。最后再由会议的领域主席(area chair)决定论文是否可被接收。
在各种学术会议统计中,CVPR被认为有着很强的影响力和很高的排名。目前在中国计算机学会推荐国际学术会议的排名中,CVPR为人工智能领域的A类会议 。在巴西教育部的排名中排名为A1。基于微软学术搜索(Microsoft Academic Search)2014年的统计,CVPR中的论文总共被引用了169,936次。
小屋美眉
每一个检测任务都有其特有的检测难点,比如背景复杂,目标尺度变化大,颜色对比度低等挑战,这就导致某个检测算法在检测任务A上可能表现SOTA,但在检测任务B上表现得可能不尽如人意。因此,分析研究每一个检测任务存在的难点与挑战至关重要,这有利于我们针对不同的检测难点设计出不同的技术以解决该项问题,从而使得我们提出的算法能够在特定的任务上表现SOTA。 目标检测任务可能存在的检测难点与挑战: (1)待检测目标尺寸很小,导致占比小,检测难度大 (2)待检测目标尺度变化大,网络难以提取出高效特征 (3)待检测目标所在背景复杂,噪音干扰严重,检测难度大 (4)待检测目标与背景颜色对比度低,网络难以提取出具有判别性的特征 (5)各待检测目标之间数量极度不均衡,导致样本不均衡 (6)检测算法的速度与精度难以取得良好平衡 不同尺度,不同形状物体的检测是目标检测面临的主要挑战之一,而多尺度检测技术是解决多尺度问题的主要技术手段。目标检测发展的几十年来,多尺度检测技术的演变经历了以下过程: (1)Feature pyramids and sliding windows(2014年前) (2)Detection with object proposals(2010-2015年) (3)Deep regression(2013-2016年) (4)Multi-reference detection(2015年后) (5)Multi-resolution detection(2016年后) 如下图5展示了多尺度检测技术的演变历程: 边框回归(The Bounding Box regression,BB)是目标检测非常重要的技术。它的目的是根据初始设定的anchor box来进一步改进修正预测框的位置。目标检测发展的几十年来,边框回归技术的演变经历了以下过程: (1)Without BB regression(2008年之前) (2)From BB to BB(2008-2013年) (3)From feature to BB(2013年后) 如下图展示了边框回归技术的演变历程 目标检测领域中每一个目标都被周围背景所包围,而我们对于一个目标的认知会根据其周围的环境作出判断,于是我们将目标周围的环境信息称作上下文信息。上下文可以作为网络判断目标类别和定位的重要辅助信息,可大大提高网络检测的精度。为网络提取上下文信息有以下三种常用的方法: (1)提取局部上下文信息用于目标检测 (2)提取全局上下文信息用于目标检测 (3)上下文信息交互提取高效上下文信息用于目标检测 如下图展示了上下文信息提取技术的演变历程: 目标检测的过程中在同一目标的位置上会产生大量的候选框,这些候选框相互之间可能会有重叠,此时我们需要利用非极大值抑制找到最佳的目标边界框,消除冗余的边界框。非极大值抑制算法的流程如下: (1)根据置信度得分进行排序; (2)选择置信度最高的比边界框添加到最终输出列表中,将其从边界框列表中删除; (3)计算所有边界框的面积; (4)计算置信度最高的边界框与其它候选框的IoU; (5)删除IoU大于阈值的边界框; (6)重复上述过程,直至边界框列表为空。 近年来非极大值抑制算法逐渐发展成为以下三条路线: (1)Greedy selection (2)Bounding box aggregation (3)Learning to NMS 如下图展示了非极大值抑制算法的技术演变历程: 目标检测的训练过程本质上还是一个样本数据不平衡的学习过程,因为检测算法中需要用到很多检测框,而真正包含目标的检测框占比却极少。在网络训练过程中,大量简单的负样本(背景)会主导学习方向而不利于网络往正确的方向加以优化,因此这需要采取一定的策略来解决这一问题。难分负样本挖掘(Hard Negative Mining, HNM)技术正是解决训练过程中的数据不平衡问题的一项关键技术。 难分负样本挖掘技术的演变主要经历了以下过程: (1)Bootstrap (2)HNM in deep learning based detectors 如下图展示了难分负样本挖掘技术的演变历程:
原文: Scalable Object Detection using Deep Neural Networks——学术范 最近,深度卷积神经网络在许多图
这不是好发表不好发表的事情,是你有没有独到的见解?有没有新颖的东西也看你人脉怎么样?
学术堂整理了几个计算机论文期刊,并做了相关介绍,供大家参考:一、《计算机光盘软件与应用》发表900元一个版面,1.5个版面起发,一个版面2000字符《计算机光盘
论文地址: 前置文章:10/16、10/17、10/18 本文提出了Point Fractal Network(PF-Net),旨在从不完整的点云数据中
对于目标检测方向并不是特别熟悉,本文记录一下RCNN, fast-RCNN, faster-RCNN, mask-RCNN这4篇有关目标检测的论文笔记和学习心得