• 回答数

    3

  • 浏览数

    220

内涵帝在此
首页 > 学术论文 > 数学归纳法的研究毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

黑糖miko

已采纳

在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读!

摘要:在数学哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。虽然直觉主义可以追溯到康德,甚至柏拉图。然而,它是近现代的,20世纪前20年,它作为一个独立的数学哲学思潮而闻名。它是逻辑学哲学中的一次风暴逆袭,是经典数学的有力挑战者。直觉主义强调“构造”,出发于“心智”。直觉主义把整个自然数论视为整个数学的基础,直觉主义拒绝排中律和反证律,抵制实无穷而推崇潜无穷。随着计算机的产生和发展,直觉主义在数字构造中起到了积极的应用。同时,直觉主义对数学哲学的创新 教育 等方面都有着不可忽视的影响。

关键词:数学哲学 直觉主义 传统逻辑 布劳威尔

一、 “存在必须是被构造”——直觉主义的产生

直觉(intuition)一词意为未经充分逻辑推理的,直观的,直接领捂事物本质的思考。与H.柏格森、B.克罗齐、E.胡塞尔等人的直觉主义不同,我们这里所研究的“直觉”并不是指主体对于客观事物的一种直接把握能力,而是指思维的本能上的一种心智活动。在这里,直觉主义提倡的直觉,并非辩证唯物主义的“直观的感觉”,其本意是“先验的心智构造”,以此为出发点,形成了对数学对象“存在性”与“可构造性”等同的要求。[1]直觉主义哲学是一种反理性主义的唯心主义哲学思潮。数学研究中的构造主义是一种有关数学基础的观点,它主张自然数及其某些规律和 方法 ,特别是数学归纳法,是可靠的出发点, 其它 一切数学对象和理论都应该从自然数构造出来。[2]“存在必须是被构造”,这是直觉主义派最著名的 口号 。也因此,直觉主义是一种构造逻辑。直觉派认为,数学中的概念和方法都是必须可以被构造的,非构造性的证明不是直觉主义者能接受的。在数学领域中,集合论悖论的问题不可能通过对已有的数学作某种局部的修改和限制加以解决,而必须依靠一些可信的标准对已有的数学进行全面的审视和改造。直觉主义认为逻辑依赖于数学,而非数学依赖逻辑。数学建立在直觉的基础上。同时,直觉主义认为哲学、逻辑甚至计数等概念都比数学复杂得多,不能作为数学的基础,数学的基础需要更简单、更直接的概念,它就是直觉,直觉是心智的一项基本功能。[3]一位直觉主义数学家阿伦特·海廷(Arend Heyting)在他的论文《数学的直觉主义基础》中指出:“立即处理数学的构造也许是符合直觉主义者的积极态度了。这个构造的最重要基石是一(unity)的概念,它是整数序列所依赖的构造原则。整数必须作为单位(units)来看待,这些单位仅仅由于在这个序列中的位置而相互区别。”[4]61

直觉主义者认为,数学的基础在于数学直觉,在他们看来,建立在数学直觉之上的理论能使“概念和推理十分清楚地呈现在我们面前”,即“对于思想来说是如此的直接,而其结果又是如此的清楚,以致不再需要任何铸的什么基础了”(A·黑丁:《直觉主义导论》)。任何数学对象被视为思维构造的产物,所以一个对象的存在性等价于它的构造的可能性。这和经典的方法不同,因为经典方法说一个实体的存在性可以通过否定它的不存在性来证明。对于直觉主义者,这是不正确的;不存在性的否定不表示可能找到存在性的构造证明。正因为如此,直觉主义是数学结构主义的一种;但它不是唯一的一类。直觉主义的基本哲学立场是,数学是人类心智“固有”的一种创造活动,是主体的自身的活动,而不是对外在的描述.数学概念是一种自主的智力活动的结果,智力活动则是研究自明定律所支配的思想构造。[5]

二、颠覆传统逻辑,形式主义的逆袭——直觉主义的特点

直觉主义不承认实无穷,拒绝实际无穷的抽象。也就是说,它不考虑像所有自然数的集合或任意有理数的序列无穷这样的无穷实体作为给定对象。数学上的实无穷思想是指:把无限的整体本身作为一个现成的单位,是已经构造完成了的东西,换言之,即是把无限对象看成为可以自我完成的过程或无穷整体。数学上存在着潜无穷与实无穷之争,就如同哲学上存在着唯物主义与唯心主义之争。而且必将长时间的持续的争论不休。数学上的潜无穷思想是指:把无限看作永远在延伸着的,一种变化着成长着被不断产生出来的东西来解释。举个形象点的例子就是,构成一条直线的点有无穷个,并且这条直线永远延伸着,不会有终结的一天。它永远处在构造中,永远完成不了,是潜在的,而不是实在。按照全称和条件量词的标准直觉主义,一个证明就是这样的潜无穷结构,这可能是合理的。(达米特《直觉主义逻辑的哲学基础》)[4]142按照此观点,所有的自然数可以构成一个集合,因为可以将所有的自然数看做是一个完成了的无穷整体。很显然,直觉主义支持潜无穷的观点,即把无穷集合看成无限延伸着的序列。

直觉主义反对排中律,这意味着直觉主义者可能和经典的数学家对一个数学命题的含义有不同理解。排中律和同一律、矛盾律并称为形式逻辑的三大基本规律。传统逻辑首先把排中律当作事物的规律,意为任一事物在同一时间里具有某属性或不具有某属性,而没有其他可能。排中律同时也是思维的规律,即一个命题是真的或不是真的,此外没有其他可能。例如,说A 或 B, 对于一个直觉主义者,是宣称A或B可以证明。但是,对于排中律, A 或 非 A, 是不被允许的,因为不能假设人们总是能够证明命题A或它的否命题。

直觉主义主要对抗的是形式主义。多个世纪以来,对数学规律的无懈可击的精确性的信念的依据是数学哲学研究的主要对象。直觉主义表示,精确性存在于人类心智之中,形式主义者认为,存在于纸面上。[4]90

直觉主义具有非逻辑性和整体性。数学直觉是作为逻辑的对立面而介定的一种认识方法,因此非逻辑性是数学直觉的最主要特性。可以说数学直觉的其他特性都是由它的非逻辑性所决定的,这是许多哲学家、科学家的共同见解。[6]直觉主义认为,数学是心灵的创造活动,心灵是丰富的,逻辑则是贫乏的。因此,坚决不能用贫乏的逻辑规则来全面准确地规划丰富的心灵活动。直觉主义的另一位代表人物阿伦特?海廷(Arend Heyting)说:“逻辑属于应用数学”。在对于直觉主义整体性上,一个日本数学家有如下精辟的解释:当一个人已经长期而持续地从事了研究并已成为一个完全成熟的研究人员时,他就已经在自己的头脑中形成了一种相对稳定的知识体系。经过他自己的努力,这种知识体系已被综合成为一种特殊的,确定的形式。而且自己综合的工作当然本身就是一种极有价值的 经验 。[7]

彭加勒在《数学中的直觉和逻辑》一文中写道:

哲学家告诉我们,纯逻辑永远也不能使我们得到任何东西;它不能创造任何新东西,任何科学也不能仅仅从它产生出来。在某种惫义上,这些哲学家是对的;要构成算术,像要构成几何学或构成任何科学一样,除了纯逻辑之外,还需要其他东西。为了称呼这种东西,我们只好使用直觉这个词。可是,在这同一谕后,潜藏着多少不同的意思呢?比较一下这四个公理:(1)等于第三个最的两个量相等;(2)若一定理对数1为真,假定它对N为真,如果我们证明它对N+1为真,则它对所有整数均为真;(3)设在一直线上,C点在A与B之间,D点在A与C之间,则D点将在A与B之间;(4)通过一个定点仅有一条直线与已知直线平行。所有这四个公理都归之于直觉,不过第一个阐明了形式逻辑诸法则中的一个法则;第二个是真实的先验综合判断,它是严格的数学归纳法的基础;第三个求助于想象:第四个是伪定义。直觉不必建立在感觉明白之上;感觉不久便会变得无能为力。[8]

值得注意的是,直觉主义不是神秘主义。直觉的“不可解释性”并不等于直觉的“神秘性”,尽管直觉是“不可解释”的,但它却有着确定的本质。我们认为,直觉是认识过程中的一种飞跃,因此它就不是一种经验的认识,而是原来的思想路线的中断,不可能按照通常的 思维方式 ,用结论和推理的环节把它连接起来,所以直觉是“不可解释的”。[9]

三、从Kant到Dummett,直觉主义派的主要人物及其思想

伊曼努尔·康德(Immanuel Kant, 1724-1804),从某种意义上来说,直觉主义是由哲学家康德开始的。1755到1770年,康德在哥尼斯堡大学教物理和数学,他认为我们所有的感觉都来自于一个预先假定的外部世界。虽然这些感觉不能提供任何知识,但是被感知到的物体间相互作用就产生了知识。心智将这些感觉梳理清楚,得到对空间和时间的直觉。康德说,感性直觉有两个纯形式,它们是先天知识的原则,这两个纯形式就是空间和时间。空间是外直觉的纯形式,而时间是内直觉的纯形式,它们都不是从外邻经验得来的,而是必然的、先天的观念。空间和时间不是客观存在的,而是心智的创作。心智理解经验,经验唤醒心智。虽然康德的思想有着直觉主义的影子,但是依旧没有直观地提出直觉主义,就数学基础的方法而言,直觉主义是现代的。[10]

亨利·彭加勒(常译作庞加莱,Henry Poincare,1854-1912),当代语境中的数学直觉主义的先驱。后人评价为数学哲学与当代数学直觉主义之间的一座桥梁。逻辑主义对于数学基础的理解是虚幻的。它使数学失去基础。然而数学的基础是存在的,它就是我们的直觉。它赋予数学以意义,从而给数学以对象。彭加勒指明了一座(本来就)架在人类精神和数学存在之间的桥梁,那便是我们的数学直觉。[11]彭加勒主张自然数是最基本的直觉,认为数学归纳法是一种包含直观的思维方法,是不能简单地归结为逻辑的。他主张使用有限个词能定义的概念,主张数学对象的可构造性。他还在另一种意义上理解和强调数学直觉,将其看做选择和发明的工具。彭加勒认为,我们有多种直觉。然而,最重要的可以归结为两类:一是“纯粹直觉”,即他通常所说的“纯粹数的直觉”、“纯粹逻辑形式的直觉”、“数学次序的直觉”等,这主要是解析家的直觉;二是“可觉察的直觉”,即想象,这主要是几何学家“形”的直觉。对于这两类直觉,他认为都是必要的,各自发挥着不同的作用。他认为,这两类直觉“似乎发挥出我们心灵的两种不同的本能”,它们像“两盏探照灯,引导陌生人相互来往于两个世界”。[12]

布劳威尔(,1881-1966),直觉主义真正的创始人和奠基人是布劳威尔。布劳威尔在数学上的直觉主义立场来源于他的哲学。1907年他在博士论文《数学基础》中提出直觉主义观点,认为数学的基础是先验的初始直觉。数学是起源于和产生于头脑的人类活动,不存在于头脑之外,因此,是独立于真实世界的。布劳威尔认为数学思维是智力构造的一个过程,它建造自己的天地,独立于经验,并且只受到必须建立于基本的数学直觉之上的限制。[10]布劳维尔发表的《数学基础》表明直觉主义的立场是强调“直觉”,这并不是说否认数学的逻辑性和严谨性,而只是突出直觉、灵感和创造力在数学中的地位。直觉主义者认为数学不仅是最讲究严格性的科学,也是最富有创造性的科学。布劳维尔认为数学的基础是先验的初始直觉,他和他的学生说他们所说的直觉正是人心对于它本身所构造的东西的清晰理解。[13]布劳维尔修改了康德的先验时空学说,放弃了“外直觉的纯形式”的先验时空概念,以适应非欧几何的发展;池把数学的基本直觉建立在“内直觉的纯形式”的先验时间概念的基础之上。[14]布劳威尔还提出了“二·一原则”(tow-oneness)。他认为这是数学的基本直觉。即假设N成立,则N+1成立。这个过程可以无限重复,创造了一切有限序数,因为“二·一原则”的元素之一可以被认为是一个新的“二·一原则”。布劳威尔认为,在这个数学的基本直觉中,联通和分离、连续和离散得到统一,并直接引出了线性连续统的直觉,即“介于”(between)的直觉。(布劳威尔《直觉主义和形式主义》)[4]93

阿伦特·海廷(Arend Heyting,1898-1980),他是布劳威尔的学生。继承了布劳威尔有关数学直觉主义的思想。他认为,直觉主义是从一定的、多少有点任意的假设出发的。它的主题是构造性的数学思想。这使得它处于经典数学之外。形式主义和直觉主义的差别在于,直觉主义的进行独立于形式化,形式化只能追随在数学构造的后面。逻辑不是直觉主义的立足点,数学构造在头脑中是很直接的,结论也应该是很清楚的,所以不需要任何基础。海廷主张,在描述直觉主义数学时,应当在日常生活中去理解。比如,在注视那边树木时,我确信我看到树木,而实际上光波达到我眼中,使我构造出树木这一信念需要相当的训练。这种观点是自然的。两个人说话,我向你灌输意见,实际制造了空气的震动。这是理论的构造。(阿伦特·海廷《论辩》)[4]77-88

迈克尔·达米特(又译米歇尔·杜麦特Michael Dummett,1925-2011),当代数学直觉主义学派的代表人物。达米特认为,数学首先是先验的,然后是分析的。达米特曾经从语言学角度和意义理论角度为直觉主义辩护。直觉主义关于数学陈述意义的解释避免了以真概念为核心概念的意义理论的不足,它把说话者关于数学陈述的理解与说话者使用这个陈述的实际能力结合在一起,因此具有很大的优点。从直觉主义关于数学陈述的意义说明出发,达米特提出了以证实为核心概念的新的意义理论的构想。[15]202达米特指出:“对于直觉主义逻辑来说,排中律的双重否定是有效的语义原则,就像二值逻辑认为排中律本身是有效的一样:断言任何陈述既不真也不假是不一致的。”[4]132

四、直觉主义的意义以及合理性

直觉主义对古典逻辑中的排中律和双重否定律等原理中的部分原则以及非构造性的结论持否定态度,也不承认数学中的实无限的对象和方法。数学的历史也表明,数学知识与理论不仅无法脱离对外部世界的永恒的依存关系,而且数学的错误不是通过限制数学,如排斥非构造数学和传统逻辑而得到克服的。数学真理的积累以及对谬误的抛弃是通过数学知识的不断增长和理论的不断完善获得的。一句话、数学的生命在于生生不息的创造过程中。庆幸的是,直觉主义由十其思想体系中某种先天的弱点而末成为数学的统治思想。但也应看到其构造思想的重要价值。[16]123-124可以说,直觉主义学派在本质上是主观和荒谬的,以直觉上的可构造性为由来绝对的肯定直觉派数学是不能真正解决问题的。但是,直觉主义揭示了经典逻辑只具有相对的真理性,在具体的数学工作中具有重要意义。

首先,数学哲学中的直觉主义学派高度认可直觉和个人的创造性思维在科学实践中的作用,推动了现代递归函数论的建立和发展,这无疑对数学的进步起到了很积极的作用。其次,直觉主义者倡导的构造性的能行性的研究方法,促进了人工智能和计算机科学的发展。这种积极探讨可行性方法在计算机数学以及计算机科学中具有重大的现实意义。第三,直觉主义数学哲学的思想方法在素质教育理论研究与实践上,具有宝贵的参考价值。在数学教育中,逻辑的作用很明显,其特征为,从已知知识出发,依据逻辑规则进行推导和演算,一步一步地达到对研究对象的认识。而直觉主义可以跳跃式地认知,虽然能一步得到正确答案,却无法说清楚其中的步骤。直觉主义虽排斥传统逻辑,但与逻辑关系十分密切,对培养良好的数学逻辑观念有着不可忽视的作用。另外,直觉主义有助于培养数学教育中大胆猜测的思维习惯。这种创新和探索精神有利于数学的进步和发展。

参考文献:

[1] 傅敏.直觉主义数学哲学研究及其对数学素质教育的启示[J].西北师范大学学报(自然科学版),1996(1).

[2] 诸葛殷同.对传统逻辑的有力挑战——评《经典逻辑与直觉主义逻辑》[J].哲学动态,1990(4).

[3] 柯华庆.直觉主义数学哲学的两个阶段[J].学术研究,2005(2).

[4] 保罗·贝纳塞拉夫(美),希拉里?普特南(美).数学哲学[M].北京:商务印书馆,2003.

[5] 黄秦安.数学哲学与数学 文化 [M].西安:陕西师范大学出版社,1999.

125 评论

may123456789

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题 2、善于反思与反求

122 评论

我想我是海啊

随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。

一、高等数学在地方高等职业教育中遇到的问题及解决办法

(一)数学师资力量短缺,教师学历偏低

地方高等职业学校通常有以下办学途径:一是通过改革,将原有高等专科学校升格成规范化的高等职业院校;二是将具备条件的成人高校扩大招生,强强联合办学,突出高职特色;三是发挥一些重点中专的专业优势,在校内办高职班。由于以上原因,在现阶段的高职院校中,存在一部分学历不高的数学教师,这既影响了数学课程的整体教学水平,又影响了学生整体素质的培养与发展。要解决这一问题就需要做到以下几点:1.依托全国教师培训基地和现有的高等院校教师培训机制,加强对数学课教师的培训,做到教师在职培训和脱产培训相结合,以在职培训为主,通过有计划地培训,促进教师学历达标。2.提高高职院校人才录用标准,在政策和待遇方面给予照顾,引进更多高学历、高水平的数学专业人才。

(二)学生对数学课重要性认识不够,学习热情不高

目前,在高职院校学生中普遍存在着“专业至上”的观念。他们片面地认为只要专业课学好了,其他的文化课无足轻重。所以数学课堂上出现了出勤人数少、成绩普遍偏低的情况。针对这一现象,教师应该处理好数学课和专业课之间的时间分配比例,让学生认识到二者相辅相成的关系,提高他们对数学课重要性的认识。在教学实践中,笔者发现很多学生对数学缺乏学习兴趣。他们不习惯数学的独特结构和抽象的思维方式,加之高职数学课跨度大、内容多、解析难,学生学习数学如见猛虎。这就要求教师在教学中采取灵活多变的教学方法,想方设法地全面激发学生的兴趣关注点,进而带动他们的思维,从而达到课堂气氛轻松活跃、教学成效显著的目的。兴趣是最好的老师,从心理学角度来讲,兴趣点的刺激更有利于学习者的理解和记忆。这种兴趣的培养不仅仅对学生学习目前的课程有利,对于学生今后的自主学习也会发挥出不可替代的作用。

(三)高等数学课程设置不合理,教学与实际应用脱节

由于高等职业教育的教学内容和教材体系不同,高职院校数学课程的安排与普通大学有明显的区别。它的课程设置应根据培训目标、教学计划等内容,合理安排教学方法和步骤。高职数学课程改革的目标应以培养高级技术应用型人才为建设目标,从教学内容和课程体系中择优选择,并围绕这一目标有层次有步骤地实施。比如,高职院校的数学课程设置,在统计、公共管理类的专业上,就应当凸显数学学科特点,强化概率论与数理统计等数学基础课程的教学;在涉及计算机类的高等数学课程设置时,就应该加强数学逻辑思维和离散数学的课堂教学,让学生认识到数学的重要性,从而缩短理论与实践的距离;在涉及到医学类的教学时,应开设“模糊数学”和“线性代数”两部分内容,其目的是在高职阶段让学生在基本掌握微积分知识的前提下,拓宽学生的数学视野,为今后相关的科学研究提供多样性的数学方法,同时培养学生缜密清晰的思维、严谨科学的方法和能力。

二、总结

高职教育是以培养学生应用能力为主的教育方式,所以在高职数学教学中应当强调以实际应用为主要目标,这既适应了数学教学改革的要求,也是今后的发展方向。课程改革既要侧重基础性、应用性,又要增强科学性和理论性;既要加强数学在实际当中的应用,又不应忽视数学作为独立学科的学科特色;既要把握“适度够用”原则,又要把握好它在高职教育中的重新地位,以做好数学课的学科建设工作。

一、网络教育高等数学的现状分析

1.学生方面。通过笔者多年来从事高等数学的网上教学工作来看,网络教育学院上的培养目标主要是面向成人在职人员,为社会培养更多的适用性、应用型人才。然而网络教育学生普遍数学基础较差,个别人甚至严重匿乏。包括有一部分学生没有参加过高考等高中阶段的学习,有一部分学生已参加工作多年早已将有关高等数学知识遗忘。面对这种情况,如果网络教育教师只是单纯地辅导高等数学知识,就会存在一部分学生由于基础差而跟不上高等数学的学习。另外厂部分学生不仅基础较差而且学习方法都很难适应高等数学的学习,再加上对网络教育学习环境不适应严重影响学习质量。

2.教师方面。根据网络教育的目前情况来看很多高校聘用的网络教育教师都是来自其他院校的兼职人员,他们很难把大部分精力用于网络教育高等数学的教学中。从长远发展看,网络教育学院应该拥有自己的专职教师队伍。有的高校聘用的大批高学历、高素质的教师队伍均为刚毕业的优秀人才。他们年龄较小掌习能力较强对工作充满极大热情。但由于他们从小受到传统教育观的影响,对网络教育的学生要求习惯同高校全日制统招生进行比较,而且教师队伍最初成立无历史借鉴周此缺乏一定的教学和实践经验。这就需要教师逐渐掌握网络教育学生的实际水平和个人要求充分利用网络教育的现代化教学水平遵循教学原则顺利实现高等数学的教学目的。

二、网络教育高等数学的教学初探

教学原则是有效进行教学必须遵循的基本要求。它既指导教师的教也指导学生的学应贯彻于教学过程的各个方面和始终。那么根据高等数学的教学特点,教学原则应贯彻以下几个方面:

1.科学性和思想性统一原则。网络教育学院的培养对象是成人在职人员,他们学习的侧重点偏向于跟自己职业相关的专业知识对高等数学等基础课缺乏重视肩个别学生会认为基础课无用,没有什么学习价值。这些都是学习态度不够端正掌习思想不够明确的表现。针对这种情况,可以通过网上教学向学生说明高等数学学习的重要性和必要性指出数学也是一种思想方法掌习数学的过程就是思维训练的过程。人类社会的进步与数学这门科学的广泛应用是分不开的。尤其到了现代现代数学正成为科技发展的强大动力同时也广泛和深入地渗透到各个领域。通过这些讲述河以提高学生的学习意识,为高等数学的学习奠定思想基础。另外还有很多学生学习的主动性很强但缺少科学合理的学习方法,即使花费很多的学习时间却没有达到良好的学习效果。这就需要教师加以引导通过网上教学同学生积极交流和讨论高等数学有益的学习方法,提高学生的学习能力。个人认为学习高等数学之前要对初等数学知识有一定的了解。如基本初等函数及其计算公式会在高等数学中再次重述常用的几何公式、不等式和数学归纳法会对微积分的学习有所帮助;方程的解法是学会微分方程的基础二项式定理、数列公式、因式分解公式是求有关无穷级数相关知识的基本方法等等。这些都是有益的学习方法经过实践认证得到了学生的充分肯定。

2.理论联系实际原则。传统高等数学的教学过于注重理论忽视概念产生的实际背景和数学方法的实际应用。网上教学就应该在淡化理论的同时,加深对数学概念的理解和应用。高等数学的概念可以从学生熟悉的生活实例或与专业相关联的实例引出从而激发学生的学习兴趣。如讲解导数概念时河以通过求变速直线运动瞬时速度的过程归纳出求解方法步骤撇开具体意义得到“导数(变化率)”的概念。还可根据不同专业的学生同时介绍与变化率有关的问题。适用于机电类专业学生河介绍圆周运动的角速度是转角对时间的导数、非恒定电流的电流强度是电量对于时间的导数等变化率问题适用于经济类专业学生河介绍产品总产量对时间的导数就是总产量的变化率、产品总成本对产量的导数就是产品总成本的变化率(边际成本)等等。在引用实例讲述知识后还可以引入典型例题。通过实际问题引出数学知识,再反过来论证数学知识在生活实际中应用这不仅提高了学生学习的兴趣减少了数学学习的枯燥性同时也给学生建立了一种数学建模的思想使学生所学的理论知识能够进一步联系生产实际并为其他学科服务。

123 评论

相关问答

  • 毕业论文归纳总结法

    问题一:毕业论文的结束语怎么写 毕业论文的结尾,是围绕本论所作的结束语。其基本的要点就是总括全文,加深题意。这一部分要对绪论中提出的、本论中分析或论证的问题加

    大坏蛋make 3人参与回答 2023-12-08
  • 数学归纳法的研究毕业论文

    在数学的哲学中,直觉主义可谓引起引起了现代学术思想的一次革命。数学与哲学的关系一是人们谈论的问题。以下是我整理的数学与哲学的论文的相关资料,欢迎阅读! 摘要:在

    内涵帝在此 3人参与回答 2023-12-07
  • 论文研究方法归纳法怎么写

    论文的研究方法部分的写法如下: 1.首先,写出论文研究方法的主要内容,其次,综合分析论证论文研究方法的主要内容,比较后,对论文的研究方法进行总结并得出明确的结论

    小红粉菲菲 2人参与回答 2023-12-08
  • 归纳法是论文写作的研究方法吗

    本学期我所学的金融双学位课程进入到了写论文,答辩的阶段。那时对于刚刚上大四的我,对于论文还是很陌生的。经过了这将近一个学期的时间,我从对论文一无所这,到现在已经

    夏天可乐冰 5人参与回答 2023-12-11
  • 论文研究归纳演绎法

    调查法调查法是科学研究中最常用的方法之一,它是有目的、有计划、有系统地搜集有关研究对象现实状况或历史状况的材料的方法,调查方法是科学研究中常用的基本研究方法,它

    2012骏马飞驰 5人参与回答 2023-12-09