• 回答数

    3

  • 浏览数

    130

空气精灵
首页 > 学术论文 > 量子干涉论文文献综述

3个回答 默认排序
  • 默认排序
  • 按时间排序

壹只头俩只脑

已采纳

SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁场,电压,磁化率等物理量.被一薄势垒层分开的两块超导体构成一个约瑟夫森隧道结.当含有约瑟夫森隧道结的超导体闭合环路被适当大小的电流偏置后,会呈现一种宏观量子干涉现象,即隧道结两端的电压是该闭合环路环孔中的外磁通量变化的周期性函数,其周期为单个磁通量子Ф0=×10-15Wb,这样的环路就叫做超导量子干涉仪.

124 评论

CATLION123

中国科大郭光灿院士团队在 光量子芯片研究 中取得重要进展。该团队任希锋研究组与中山大学董建文、浙江大学戴道锌等研究组合作,基于光子能谷霍尔效应,在能谷相关拓扑绝缘体芯片结构中实现了 量子干涉 。

相关成果以“编辑推荐文章 (Editors' Suggestion)”的形式6月11日发表在国际知名学术期刊《物理评论快报》上。

拓扑光子学 由于具有 鲁棒性 的能量输运性质,在 光子芯片 研究方向具有实用化的应用前景。

产生拓扑相变的关键在于通过破坏系统的时间反演对称性或空间反演对称性,以在能级简并点产生能隙,从而形成受拓扑保护的边界态。

对于空间反演对称性被破坏的系统,在拓扑数不同的区域组成的边界处,能支持能谷相关的方向性传播的边界态模式,即 光子能谷霍尔效应 。

具有不同亚晶格能量的周期排布的六角光子晶体结构可实现这样的能谷光子拓扑绝缘体,从而可用于构建更加紧凑的急剧弯折的光学线路,提高光子芯片的器件集成度和鲁棒性。

近年来 拓扑结构中鲁棒性的量子态传输 成为热门的研究方向,而 量子干涉 作为光量子信息过程的核心,尚未在拓扑保护光子晶体芯片中实现。

任希锋研究组与中山大学董建文课题组合作在硅光子晶体体系中设计并制备出了“鱼叉”形的拓扑分束器结构。

他们发现 六角晶格结构 的光子晶体中的电场相位涡旋方向依赖于不同拓扑陈数的晶格结构以及其所处的能带位置,可以构造出两种不同结构的拓扑边界。

基于能谷相关方向性传输的机理,设计并加工了拐角可达到120度的“鱼叉”形拓扑分束器,并在此结构上演示了高可见度的双光子干涉过程, 干涉可见度达到 。进一步通过级联两个拓扑分束器结构演示了 片上路径编码量子纠缠态 的产生。

该成果为拓扑光子学特别是能谷光子拓扑绝缘体结构应用于更加深入的量子信息处理过程提供了一个新的思路,审稿人一致认为这是一个有趣且重要的研究工作,并给出高度评价:“This is an interesting and important work (这是一个有趣而且重要的工作)”

“I find the results interesting, in particular, the implementation of the HOM effect in this device, which may have implications in high fidelity on-chip quantum information processing (这个结果非常有趣,特别的,器件中实现的HOM干涉过程可能对高保真片上量子信息处理起到重要作用)”。

中科院量子信息重点实验室任希锋教授、中山大学董建文教授为论文共同通讯作者,中科院量子信息重点实验室博士生陈阳和中山大学博士后何辛涛为论文共同第一作者,浙江大学戴道锌研究组参与工作。

该工作得到了 科技 部、国家基金委、中国科学院、安徽省以及中国科学技术大学的资助。

# 科技 快讯# # 科技 圈今日大事件# #中科大# #中美#

149 评论

大大的蚂蚁啊

参见:双缝实验#量子力学结果及双缝实验中光子的动力学用每次发射单个电子进行的双缝实验,用光子得到的结果也类似于此。本图描述的是随时间的累积,到达屏幕的电子的分布情况。1905年至1917年间,爱因斯坦通过马克斯·普朗克的能量量子化假设和对光电效应的解释,在《关于光的产生和转化的一个试探性的观点》、《论我们关于辐射的本性和组成的观点的发展》、《论辐射的量子理论》等论文中提出电磁波的能量由不连续的能量子组成,这些能量子被称为光量子(光子),而电磁辐射必须同时具有波动性和粒子性两种自然属性,这被称作波粒二象性。自罗伯特·密立根于1916年完成了光电效应的一系列实验,以及阿瑟·康普顿于1923年观察到了X射线被自由电子的散射,并于1926年测定了光子的动量,物理学界都逐渐接受了电磁波也具有粒子性的这一事实。然而,如果我们从光子的角度来理解干涉现象,就会发现存在如下的问题:当两束相干光中对应的两个光子彼此发生干涉时,相长干涉的场合需要从两个光子中产生出四个光子,相消干涉的场合则需要两个光子彼此抵消,这违反了能量守恒定律。对于这一问题的解决,量子力学的哥本哈根诠释认为光子的干涉是单个光子波函数的几率幅叠加,波函数是一种几率波,其复振幅(几率幅)的模平方正比于对应的状态(本征态)发生的几率。以双缝干涉为例,对于每个光子而言,其状态都为从两条狭缝中的每一条经过的量子态的叠加:其中、分别对应从狭缝1、狭缝2经过的量子态,几率幅、对应这一光子从狭缝1和狭缝2出射的各自几率,其本身是一个复数。而光检测器探测到这一光子的几率,从统计上看也就是光检测器探测到的光强,是几率幅叠加之后的模平方:这一表达和经典的电磁波的矢量叠加非常相似——实际上,如果将上面的量子态、用具体的电磁波形式来代换,即用电磁场来表示光子的波函数,在形式上能得到和经典干涉相同的结论。然而,这种等效从根本上是错误的,因为电磁场是一个可观测量,而波函数在哥本哈根诠释中是一个不可观测量;从光子角度所看到的双缝实验是单个光子本身几率波的干涉,而几率也是单个光子出现在特定量子态的几率,而不是位于特定量子态的光子数量。关于这一点,保罗·狄拉克在《量子力学原理》中做了说明:“在量子力学发现以前不久,人们就已了解到,光波和光子之间的联系必须是统计的性质。然而,他们没有清楚地了解到,波函数告诉我们的是一个光子在一特定位置上的几率,而不是在那个位置上可能有的光子数目。这一区别的重要性可在下面看清楚。假定我们令大量光子组成的光束分裂为两个强度相等的部分。按照光束的强度与其中可能的光子数目相联系的假定,我们就会得到,光子总数的一般分别走入每一组分。现在,如果使这两个组分互相干涉,我们就得要求,在一个组分中的一个光子能够与另一组分中的一个光子互相干涉。在某些情况下,这两个光子就要互相抵消,而在另一些情况下,它们就要产生四个光子。这样一来,就会和能量守恒相矛盾了。而新的理论把波函数与一个光子的几率联系起来,就克服了这一困难,因为这个理论认定,每一光子都是部分地走入两个组分中的每一个。这样,每一个光子只与它自己发生干涉。从来不会出现两个不同的光子之间的干涉。”——保罗·狄拉克,《量子力学原理》第四版,第一章第3节尽管在理论上可以在双缝干涉中每次从相干光源只发射一个光子,根据波函数的统计诠释,经过长时间的积累在屏上将得到经典的干涉条纹;然而在当前的技术下,得到单光子态还十分困难——即使是采用单模激光作为相干光源,多个光子仍然会彼此非常接近地进入光检测器,这是光子作为玻色子的一种量子效应。实际操作中相对可行的办法是产生光子对,从而可以作为产生单光子态的一个近似,此时在一个光子对中第二个光子的频率和传播方向都和第一个光子相关,从而可被看作是单光子的福柯态。常见的产生光子对的方法之一是原子级联,实验中将钙原子激发到6S0态,它们会通过一个二阶辐射过程回到基态,并辐射出波长分别为纳米和纳米的光子对。另一种更常见的方法是利用非线性光学中的参量下转换,用晶体中的单个紫外光子作为泵浦光,其通过非线性效应产生一个信号光子和一个闲频光子,这两个光子的波长都近似为泵浦光子的波长的2倍,偏振方向都和泵浦光子互相垂直;通过采用双折射晶体可以实现泵浦光和下转换光的相位匹配,从而使输出光强得到最大。产生的两个下转换光子都携带了泵浦光子的相位信息,从而处于一个纠缠态,对信号光子的任何测量都会影响到闲频光子的量子态,反之亦然。

167 评论

相关问答

  • 量子干涉论文文献综述范文

    你看下这个吧,虽然不是范文,应该对你写作有点帮助。文章来源:期刊云-论文格式。文献综述的写作及注意事项(供毕业设计参考)1. 基本概念文献综述是反映当前某一领域

    夏香林萌 2人参与回答 2023-12-09
  • 等厚干涉毕业论文

    干涉测量技术是以光波干涉原理为基础进行测试的一门技术。现代干涉测量技术采用激光作光源并且综合了光学和电子学的最新成就,具有量程大、分辨率高、抗干扰能力强、测量精

    曾涛~家居建材 5人参与回答 2023-12-11
  • 服务质量论文文献综述

    撰写文献综述步骤: 1、搜索相关文献 2、评价来源 3、识别主题、辩论和差距 4、概述结构 5、写文献综述

    天晟哥哥 4人参与回答 2023-12-09
  • 小王子的论文文献综述

    法国著名作家和飞行员安东尼•德•圣埃克苏佩里的《小王子》是一本著名的童话,深受儿童和成人的喜爱。虽说看起来是一部儿童故事,但这部作品是如此的深奥,充满了谜语,哲

    huazhiqingci 5人参与回答 2023-12-11
  • 量子干涉论文文献综述

    SQUID实质是一种将磁通转化为电压的磁通传感器,其基本原理是基于超导约瑟夫森效应和磁通量子化现象.以SQUID为基础派生出各种传感器和测量仪器,可以用于测量磁

    空气精灵 3人参与回答 2023-12-07