厦门混世小魔王
浙江工业大学化工学院贾义霞课题组近年来一直致力于手性合成与不对称催化领域的研究工作,取得较好的研究成果,在.、.等国际重要学术期刊上发表一系列研究论文。江工业大学化学工程与材料学院设有化学工程、应用化学、工业催化、化学工艺、材料学、农药学、化学等7个学科,其中工业催化为国家重点学科(培育),应用化学、工业催化、新材料及加工工程为浙江在职研究生重中之重学科,化学工程、材料学为浙江省重点学科。最近,浙江工业大学化工学院贾义霞课题组在不对称傅克反应研究中取得重要进展,在国际顶级期刊《德国应用化学》(Angew. Chem. Int. Ed.)上以“Dual Catalysis for the Redox Annulation of Nitroalkynes with Indoles: Enantioselective Construction of Indolin-3-ones Bearing Quaternary Stereocenters”为题发表研究论文,首次报道以硝酮为烷基化试剂的不对称傅克烷基化反应,并利用三氯化金/手性磷酸组合催化剂,实现了邻硝基苯乙炔与吲哚的环化/烷基化反应的高效串联,高选择性地构筑含有2-位季碳手性中心的吲哚酮类化合物,为含有该类结构的重要天然产物和生物活性分子的合成提供了快速有效的方法。该研究主要由浙江工业大学刘人荣老师和叶仕春硕士完成,二年级本科生陈净标同学参与了最优催化剂¬——五氟苯基手性磷酸的合成。这一工作是该课题组在不对称傅克反应领域继J. Am. Chem. Soc. 2013, 135, 2983后报道的第二个重要研究结果。研究受到国家自然科学基金、教育部新世纪优秀人才支持计划以及浙江省自然科学杰出青年基金等在职研究生项目的大力支持。考研政策不清晰?同等学力在职申硕有困惑?院校专业不好选?点击底部官网,有专业老师为你答疑解惑,211/985名校研究生硕士/博士开放网申报名中:
浪费粮食的满福
大家好,本期为大家带来的是Nature集团旗下的子刊Nature Communications,专门发表生物学、物理学和化学等各领域的高质量研究论文,2020年的影响因子为.
1
Cryo-EM structures of human A2ML1 elucidate the protease-inhibitory mechanism of the A2M family
人 A2ML1 的冷冻电镜结构阐明了 A2M 家族的蛋白酶抑制机制
A2ML1 是一种单体蛋白酶抑制剂,属于蛋白酶抑制剂和补体因子的 A2M 超家族。该研究中,作者研究了人类 A2ML1 的蛋白酶抑制机制,并确定了其天然和蛋白酶切割构象的结构。 A2ML1 的功能抑制单元是一种单体,它依赖于蛋白酶的共价结合(由 A2ML1 的硫酯介导)来实现抑制。与将蛋白酶捕获在由四个亚基形成的两个内室中的 A2M 四聚体相比,在蛋白酶切割的单体 A2ML1 中,无序区域围绕捕获的蛋白酶并可能阻止底物进入。在天然 A2ML1 中,诱饵区域穿过疏水通道,这表明诱饵区域切割对这种排列的破坏会触发广泛的构象变化,从而导致蛋白酶抑制。与补体 C3/C4 的结构比较表明,A2M 蛋白质超家族具有这种机制,可触发蛋白水解激活后发生的构象变化。
2
Origins of glycan selectivity in streptococcal Siglec-like adhesins suggest mechanisms of receptor adaptation
链球菌 Siglec 样粘附素中聚糖选择性的起源表明受体适应机制
细菌与宿主受体的结合是共生和发病机制的基础。 许多链球菌使用 Siglec 样结合区 (SLBR) 粘附在细胞表面表达的蛋白质附着碳水化合物上。 识别的精确聚糖库可能决定生物体是否是严格的共生体而不是病原体。 然而,目前尚不清楚是什么驱动了受体选择性。 该研究中,作者使用了五个具有代表性的 SLBR,并确定了序列和结构高变的受体结合位点区域。 结果表明,这些区域使用嵌合发生和单个氨基酸取代来控制首选碳水化合物配体的身份。 作者进一步评估了首选配体的身份如何影响与人类唾液和血浆样品中糖蛋白受体的相互作用。 由于点突变可以改变首选的人类受体,这些研究表明链球菌如何适应环境聚糖库的变化。
3
Computationally designed hyperactive Cas9 enzymes
计算设计的高活性 Cas9 酶
改变活细胞基因组的能力是了解基因如何影响生物体功能的关键,并且对于修改生命系统以达到有用的目的至关重要。 然而,这一目标长期以来一直受到基因工程所涉及的技术挑战的限制。 基因编辑的最新进展绕过了其中一些挑战,但结果并不理想。 该研究中,作者使用 FuncLib 计算设计具有显着更高的不依赖于供体的编辑活性的 Cas9 酶。 作者使用与酵母细胞存活相关的遗传回路来量化 Cas9 活性并发现工程区域之间的协同相互作用。 这些过度活跃的 Cas9 变体在哺乳动物细胞中有效发挥作用,并将更大、更多样化的插入和缺失池引入目标基因组区域,为增强和扩展基于 CRISPR 的基因编辑的可能应用提供了工具。
4
Modular (de)construction of complex bacterial phenotypes by CRISPR/nCas9-assisted, multiplex cytidine base-editing
通过 CRISPR/nCas9 辅助、多重胞苷碱基编辑对复杂细菌表型进行
模块化(去)构建
CRISPR/Cas 技术构成了基因组工程的强大工具,但它们在非传统细菌中的使用取决于宿主因素或外源重组酶,这限制了效率和通量。该研究中,作者通过为革兰氏阴性菌开发广泛适用的基因组工程工具集来减轻这些实际限制。该挑战通过定制 CRISPR 碱基编辑器来解决,该编辑器能够以 >90% 的效率实现单核苷酸分辨率操作 (C·G T·A)。此外,将 Cas6 介导的guide RNAs 处理整合到用于质粒组装的流线型协议中,支持多重碱基编辑,效率 >85%。该工具集用于构建和解构土壤细菌恶臭假单胞菌中的复杂表型。芳香化合物生产表型的单步工程和复杂氧化还原代谢的多步解构说明了该工具箱提供的多重碱基编辑的多功能性。因此,这种方法克服了以前技术的典型局限性,并赋予了迄今为止遥不可及的革兰氏阴性细菌工程计划。
5
Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints
通过使用蛋白质组约束的基因组规模建模提高酵母的重组蛋白产量
真核细胞被用作细胞工厂来生产和分泌大量重组药物蛋白,包括目前最畅销的几种药物。 由于分泌途径的重要作用和复杂性,传统上通过代谢工程改进重组蛋白生产相对临时。 并且需要一种更系统的方法来产生新颖的设计原则。 该研究中,作者提出了酵母酿酒酵母 (pcSecYeast) 的蛋白质组约束的基因组规模蛋白质分泌模型,这使得能够模拟和解释由有限的分泌能力引起的表型。 作者进一步应用 pcSecYeast 模型来预测生产几种重组蛋白的过表达目标。通过实验验证了许多预测的 α-淀粉酶生产目标,以证明 pcSecYeast 作为计算工具在指导酵母工程和改进重组蛋白生产方面的应用。
6
An in vivo gene amplification system for high level expression in Saccharomyces cerevisiae
一种在酿酒酵母中高水平表达的体内基因扩增系统
由于基因表达水平不足导致的代谢途径瓶颈仍然是使用微生物细胞工厂进行工业生物生产的一个重大问题。增加基因剂量可以克服这些瓶颈,但目前的方法存在许多缺点。该研究中,作者描述了 HapAmp,一种使用单倍体不足作为进化力量来驱动体内基因扩增的方法。 HapAmp 可实现异源基因拷贝的高效、可滴定和稳定整合,将多达 47 个拷贝传递到酵母基因组中。该方法以代谢工程为例,可显着提高倍半萜橙花油、单萜柠檬烯和四萜番茄红素的产量。柠檬烯滴度在单个工程步骤中提高了 20 倍,在烧瓶培养中 1 g L -1 。作者还展示了酵母中异源蛋白质产量的显着增加。 HapAmp 是一种快速解锁代谢瓶颈的有效方法,用于微生物细胞工厂的发展。
7
Discovery and characterization of a terpene biosynthetic pathway featuring a norbornene-forming Diels-Alderase
发现和表征具有降冰片烯形成 Diels-Alderase 的萜烯生物合成途径
周环酶,即催化周环反应的酶,形成了具有生物催化效用的不断扩大的酶家族。尽管发现了越来越多的周环酶,但令人惊讶的是,环戊二烯和烯烃亲二烯体之间的 Diels-Alder 环化反应形成降冰片烯,这是合成化学中研究最好的环加成反应之一,迄今为止还没有相应的酶促反应。该研究中,作者报告了以降冰片烯合酶 SdnG 为特征的途径的发现,该途径用于生物合成 sordaricin - 抗真菌天然产物 sordarin 的萜烯前体。sordaricin 生物合成的完全重构揭示了 Nature 使用的一种简洁的氧化策略,用于将完全碳氢化合物前体转化为 SdnG 的高度功能化底物,用于分子内 Diels-Alder 环加成。SdnG 生成 sordaricin 的降冰片烯核心并加速该反应以抑制活化的亲双烯体的宿主介导的氧化还原修饰。这项工作的发现扩大了周环酶催化反应和 P450 介导的萜烯成熟的范围。
8
Rationally engineering santalene synthase to readjust the component ratio of sandalwood oil
合理改造檀香合成酶调整檀香油成分比例
植物精油 (PEO) 广泛用于化妆品和保健品行业。 PEO的成分比例决定了它们的质量。在PEO生物技术平台的建设中,控制组分比例是一项挑战。该研究中,作者通过多尺度模拟 探索 产物混杂和产物特异性檀香烯合酶(即 SaSSy 和 SanSyn)的催化反应途径。 SanSyn 的 F441 被发现是限制中间体构象动力学的关键残基,因此一般碱基 T298 的直接去质子化主要产生 α-檀香烯。随后对该塑料残基的诱变导致产生突变酶 SanSynF441V,该酶可产生 α-和 β-檀香烯。通过代谢工程的努力,檀香萜/檀香酚滴度达到 mg/L,成分比与 ISO 3518:2002 标准非常匹配。本研究代表了通过代谢和酶工程相结合构建具有理想组分比例的 PEO 生物技术平台的范例。
目录一、摘要二、现代生物技术与健康1、现代生物技术中蛋白质与健康2、现代生物技术中糖类与健康3、现代生物技术中与健康4、现代生物技术中与健康三、总结四、后序五、
青年:实现江西崛起的希望同学们、同志们:青年是祖国的未来,是民族的希望。在任何一个时代中,青年都是社会上最富有朝气、最富有创造性、最富有生命力的群体。党和人民对
摘要采用等体积浸渍-沉淀法制备了ZrO2/Al2O3、K2O-ZrO2/Al2O3、MgO-ZrO2/Al2O3、V2O5-ZrO2/Al2O3负载型复合载体,
化学论文格式及要求7.在关键词的下一行,标著本文的中图分类号。请用《中国图书馆分类法》第4版中的分类号。(可上网查询) 8.请写作者简介,包括:作者
1.有利于激发学生学习兴趣,强化学习动力 学生的学习动力来源有两个方面:一是明确的学习目的;二是浓厚的学习兴趣。由于社会的变迁,生活条件的改善,一些中学生的