年糕年糕熊
向量范数定义1. 设 ,满足1. 正定性:║x║≥0,║x║=0 iff x=02. 齐次性:║cx║=│c│║x║, 3. 三角不等式:║x+y║≤║x║+║y║则称Cn中定义了向量范数,║x║为向量x的范数.可见向量范数是向量的一种具有特殊性质的实值函数.常用向量范数有,令x=( x1,x2,…,xn)T 1-范数:║x║1=│x1│+│x2│+…+│xn│ 2-范数:║x║2=(│x1│2+│x2│2+…+│xn│2)^1/2 ∞-范数:║x║∞=max(│x1│,│x2│,…,│xn│) 易得 ║x║∞≤║x║2≤║x║1≤n1/2║x║2≤n║x║∞ 定理中任意两种向量范数║x║α,║x║β是等价的,即有m,M>0使 m║x║α≤║x║β≤M║x║ 可根据范数的连续性来证明它.由定理1可得定理2.设{x(k)}是Cn中向量序列,x是Cn中向量,则║x(k)-x║→0(k→∞) iff xj(k)-xj→0,j=1,2,…,n(k→∞)其中xj(k)是x(k)的第j个分量,xj是x的第j个分量.此时称{x(k)}收敛于x,记作x(k) →x(k→∞),或 .三、 矩阵范数定义2. 设 ,满足1. 正定性:║X║≥0,║X║=0 iff X=02. 齐次性:║cX║=│c│║X║, 3. 三角不等式:║X+Y║≤║X║+║Y║4. 相容性: ║XY║≤║X║║Y║则称Cn×n中定义了矩阵范数,║X║为矩阵X的范数.注意, 矩阵X可视为n2维向量,故有前三条性质.因此定理1,2中向量的等价性和向量序列收敛的概念与性质等也适合于矩阵.第四条,是考虑到矩阵乘法关系而设.更有矩阵向量乘使我们定义矩阵范数向量范数的相容性:║Ax║≤║A║║x║所谓由向量范数诱导出的矩阵范数与该向量范数就是相容的.定理3. 设A是n×n矩阵,║?║是n维向量范数则║A║=max{║Ax║:║x║=1}= max{║Ax║/║x║: x≠0}是一种矩阵范数,称为由该向量范数诱导出的矩阵范数或算子范数,它们具有相容性或者说是相容的. 单位矩阵的算子范数为1 可以证明任一种矩阵范数总有与之相容的向量范数.例如定义: ║x║=║X║,X=(xx…x) 常用的三种向量范数诱导出的矩阵范数是 1-范数:║A║1= max{║Ax║1:║x║1=1}= 2-范数:║A║2=max{║Ax║2:║x║2=1}= ,λ1是AHA的最大特征值. ∞-范数:║A║∞=max{║Ax║∞:║x║∞=1}= 此外还有Frobenius范数: .它与向量2-范数相容.但非向量范数诱导出的矩阵范数.四、 矩阵谱半径 定义3.设A是n×n矩阵,λi是其特征值,i=1,2,…,n.称 为A的谱半径. 谱半径是矩阵的函数,但非矩阵范数.对任一矩阵范数有如下关系: ρ(A)≤║A║因为任一特征对λ,x,Ax=λx,令X=(xx…x),可得AX=λX.两边取范数,由矩阵范数的相容性和齐次性就导出结果. 定理3.矩阵序列I,A,A2,…Ak,…收敛于零的充分必要条件是ρ(A)
蓝色天机
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。半范数反而可以为非零的矢量赋予零长度。举一个简单的例子,在二维的欧氏几何空间 R就可定义欧氏范数。在这个矢量空间中的元素常常在笛卡儿坐标系统中被画成一个从原点出发的带有箭头的有向线段。每一个矢量的欧氏范数就是有向线段的长度。其中定义范数的矢量空间就是赋范矢量空间。同样,其中定义半范数的矢量空间就是赋半范矢量空间。假设V是域F上的矢量空间;V的半范数是一个函数;,满足于:(非负性)(正值齐次性)(三角不等式).范数是一个半范数加上额外性质:p(v) 是零矢量,当且仅当v是零矢量(正定性)如果拓扑矢量空间的拓扑可以被范数导出,这个拓扑矢量空间被称为赋范矢量空间。若X是数域K上的线性空间,泛函满足:⒈ 正定性:,且;⒉ 正齐次性:;⒊ 次可加性(三角不等式):。那么称为X上的一个范数。(注意到║x+y║≤║x║+║y║中如令y=-x,再利用║-x║=║x║可以得到║x║≥0,即║x║≥0在定义中不是必要的。)如果线性空间上定义了范数,则称之为赋范线性空间。注记:范数与内积,度量,拓扑是相互联系的。⒈ 利用范数可以诱导出度量:,进而诱导出拓扑,因此赋范线性空间是度量空间。但是反过来度量不一定可以由范数来诱导。⒉ 如果赋范线性空间作为(由其范数自然诱导度量d(x,y)=║x-y║的)度量空间是完备的,即任何柯西(Cauchy)序列在其中都收敛,则称这个赋范线性空间为巴拿赫(Banach)空间。⒊ 利用内积;可以诱导出范数:。反过来,范数不一定可以诱导内积。当范数满足平行四边形公式时,这个范数一定可以诱导内积。完备的内积空间称为希尔伯特(Hilbert)空间。⒋ 如果去掉范数定义中的正定性,那么得到的泛函称为半范数(seminorm或者叫准范数),相应的线性空间称为赋准范线性空间。对于X上的两种范数,,若存在正常数C满足那么称弱于。如果弱于且弱于,那么称这两种范数等价。可以证明,有限维空间上的范数都等价,无限维空间上至少有阿列夫(实数集的基数)种不等价的范数。
小火车君
其这里实就是规定的范数函数的p值。
这里的无穷和1,就是取的不同p值。
0范数——向量中非0的元素的个数
1范数,为绝对值之和。
2范数,就是通常意义上的模。即距离。
无穷范数——向量中最大元素的绝对值。
对于无穷范数的说明:当p取无穷大时,
最终只与元素中绝对值最大的元素有关了,即
范数(norm)是数学中的一种基本概念,在泛函分析中,范数是一种定义在赋范线性空间中函数,满足相应条件后的函数都可以被称为范数。
范数,是具有“长度”概念的函数。在线性代数、泛函分析及相关的数学领域,范函是一个函数,其为矢量空间内的所有矢量赋予非零的正长度或大小。半范数反而可以为非零的矢量赋予零长度。
举一个简单的例子,在二维的欧氏几何空间 R就可定义欧氏范数。在这个矢量空间中的元素常常在笛卡儿坐标系统中被画成一个从原点出发的带有箭头的有向线段。每一个矢量的欧氏范数就是有向线段的长度。
其中定义范数的矢量空间就是赋范矢量空间。同样,其中定义半范数的矢量空间就是赋半范矢量空间。
有限维空间上的范数具有良好的性质,主要体现在以下几个定理:
性质1:对于有限维赋范线性空间的任何一组基,范数是元素(在这组基下)的坐标的连续函数。
性质2(Minkowski定理):有限维线性空间的所有范数都等价。
性质3(Cauchy收敛原理):实数域(或复数域)上的有限维线性空间(按任何范数)必定完备。
性质4:有限维赋范线性空间中的序列按坐标收敛的充要条件是它按任何范数都收敛。
向量范数定义1. 设 ,满足1. 正定性:║x║≥0,║x║=0 iff x=02. 齐次性:║cx║=│c│║x║, 3.
不会了给予你辅导可以的,给你发一份
初中数学是为之后的数学学习打下基础的,学好初中的知识点很重要,下面我为你整理了几篇初中数学教学论文范文,希望对你有帮助。 数学教学论文篇一 一、引进有效的教学方
这个我在中国期刊库的网站又看到过的,你可以去找找
论文研究方法包括哪些 论文研究方法包括哪些,大学生活的最后一年同学们是要写毕业论文的,而毕业论文对于每位同学来说都有很大的意义,下面大家就跟随我一起来看看论文研