• 回答数

    3

  • 浏览数

    87

xyrlovecat
首页 > 学术论文 > 浅谈数学解题规范毕业论文

3个回答 默认排序
  • 默认排序
  • 按时间排序

洛雪吟风

已采纳

我这里有一份“等”对“不等”的启示 对于解集非空的一元二次不等式的求解,我们常用“两根之间”、“两根之外”这类简缩语来说明其结果,同时也表明了它的解法.这是用“等”来解决“不等”的一个典型例子.从表面上看,“等”和“不等”是对立的,但如果着眼于“等”和“不等”的关系,会发现它们之间相互联系的另一面.设M、N是代数式,我们把等式M=N叫做不等式M<N,M≤N,M>N、M≥N相应的等式.我们把一个不等式与其相应的等式对比进行研究,发现“等”是“不等”的“界点”、是不等的特例,稍微深入一步,可以从“等”的解决来发现“不等”的解决思路、方法与技巧.本文通过几个常见的典型例题揭示“等”对于“不等”在问题解决上的启示. � 1.否定特例,排除错解 �解不等式的实践告诉我们,不等式的解区间的端点是它的相应等式(方程)的解或者是它的定义区间的端点(这里我们把+∞、-∞也看作端点).因此我们可以通过端点的验证,否定特例,排除错解,获得解决问题的启示. �例1 满足sin(x-π/4)≥1/2的x的集合是(). ��A.{x|2kπ+5π/12≤x≤2kπ+13π/12,k∈Z} ��B.{x|2kπ-π/12≤x≤2kπ+7π/12,k∈Z} ��C.{x|2kπ+π/6≤x≤2kπ+5π/6,k∈Z} ��D.{x|2kπ≤x≤2kπ+π/6,k∈Z}∪{2kπ+5π/6≤(2k+1)π,k∈Z}(1991年三南试题) �分析:当x=-π/12、x=π/6、x=0时,sin(x-π/4)<0,因此排除B、C、D,故选A. �例2 不等式 +|x|/x≥0的解集是(). ��A.{x|-2≤x≤2} ��B.{x|- ≤x<0或0<x≤2} ��C.{x|-2≤x<0或0<x≤2} ��D.{x|- ≤x<0或0<x≤ } � 分析:由x=-2不是原不等式的解排除A、C,由x=2是原不等式的一个解排除D,故选B. �这两道题若按部就班地解来,例1是易错题,例2有一定的运算量.上面的解法省时省力,但似有“投机取巧”之嫌.选择题给出了三误一正的答案,这是问题情景的一部分.而且是重要的一部分.我们利用“等”与“不等”之间的内在联系,把目光投向解区间的端点,化繁为简,体现了具体问题具体解决的朴素思想,这种“投机取巧”正是抓住了问题的特征,体现了数学思维的敏捷性和数学地解决问题的机智.在解不等式的解答题中,我们可以用这种方法来探索结果、验证结果或缩小探索的范围. �例3 解不等式loga(1-1/x)>1.(1996年全国高考试题) �分析:原不等式相应的等式--方程loga(1-1/x)=1的解为x=1/(1-a)(a≠1是隐含条件).原不等式的定义域为(1,+∞)∪(-∞,0).当x→+∞或x→-∞时,loga(1-1/x)→0,故解区间的端点只可能是0、1或1/(1-a).当0<a<1时,1/(1-a)>1,可猜测解区间是(1,1/(1-a));当a>1时,1/(1-a)<0,可猜测解区间是(1/(1-a),0).当然,猜测的时候要结合定义域考虑. �上面的分析,可以作为解题的探索,也可以作为解题后的回顾与检验.如果把原题重做一遍视为检验,那么一则费时,对考试来说无实用价值,对解题实践来说也失去检验所特有的意义;二则重做一遍往往可能重蹈错误思路、错误运算程序的复辙,费时而于事无补.因此,抓住端点探索或检验不等式的解,是一条实用、有效的解决问题的思路. �2.诱导猜想,发现思路 �当我们证明不等式M≥N(或M>N、M≤N、M<N)时,可以先考察M=N的条件,基本不等式都有等号成立的充要条件,而且这些充要条件都是若干个正变量相等,这就使我们的思考有了明确的目标,诱导猜想,从而发现证题思路.这种思想方法对于一些较难的不等式证明更能显示它的作用. �例4 设a、b、c为正数且满足abc=1,试证:1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥3/2.(第36届IMO第二题) �分析:容易猜想到a=b=c=1时,原不等式的等号成立,这时1/a3(b+c)=1/b3(c+a)=1/c3(a+b)=1/2.考虑到“≥”在基本不等式中表现为“和”向“积”的不等式变换,故想到给原不等式左边的每一项配上一个因式,这个因式的值当a=b=c=1时等于1/2,且能通过不等式变换的运算使原不等式的表达式得到简化. �1/a3(b+c)+(b+c)/4bc≥ =1/a, �1/b3(a+c)+(a+c)/4ca≥1/b, �等号不一定成立而启迪我们对问题进一步探索的典型例子是1997年全国高考(理科)第22题: �例8 甲、乙两地相距S千米(km),汽车从甲地匀速行驶到乙地,速度不得超过c千米/小时(km/h).已知汽车每小时的运输成本(以元为单位)由可变部分和固定部分组成:可变部分与速度v(千米/小时)的平方成正比,比例系数为b,固定部分为a元. �Ⅰ.把全程运输成本y(元)表示为速度v(千米/小时)的函数,并指出这个函数的定义域; �Ⅱ.为了使全程运输成本最小,汽车应以多大的速度行驶? �分析:y=aSv+bSv,v∈(0,c〕,由y≥2S 当且仅当aS/v=bSv,即当v= 时等号成立得,当v= 时y有最小值.这是本题的正确答案吗?那就得考虑v= 是否一定成立.当 ≤c时可以,但 是有可能大于c的.这就引发了我们进行分类讨论的动机,同时也获得分类的标准. �综上所述,“等”是不等式问题中一道特殊的风景,从“等”中寻找问题解决的思路,本质上是特殊化思想在解题中的应用.从教学上看,引导学生注视不等式问题中的“等”,是教会学生发现问题、提出问题,从而分析问题、解决问题的契机. �1/c3(a+b)+(a+b)/4ab≥1/c, �将这三个等式相加可得 �1/a3(b+c)+1/b3(c+a)+1/c3(a+b)≥1/a+1/b+1/c-(1/4)〔(b+c)/bc+(c+a)/ca+(a+b)/ab〕=(1/2)(1/a+1/b+1/c)≥(3/2) =3/2,从而原不等式获证. �这道题看似不难,当年却使参赛的412名选手中有300人得0分.上述凑等因子的思路源于由等号的成立条件而产生的猜想,使思路变得较为自然,所用的知识是一般高中生所熟知的.再举二例以说明这种方法有较大的适用范围. �例5 设a,b,c,d是满足ab+bc+cd+da=1的正实数,求证:a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥1/3.(第31届IMO备选题) �证明:a3/(b+c+d)+a(b+c+d)/9≥(2/3)a2, �b3/(a+c+d)+b(a+c+d)/9≥(2/3)b2, �c3/(a+b+d)+c(a+b+d)/9≥(2/3)c2, �d3/(a+b+c)+d(a+b+c)/9≥(2/3)d2. �∴ a3/(b+c+d)+b3/(a+c+d)+c3/(a+b+d)+d3/(a+b+c)≥(2/3)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da+ac+bd) �=(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)+(1/9)(a2+c2-2ac+b2+d2-2bd) �≥(5/9)(a2+b2+c2+d2)-(2/9)(ab+bc+cd+da)≥(5/9)(ab+bc+cd+da)-(2/9)(ab+bc+cd+da)=(1/3)(ab+bc+cd+da)=1/3. �当a=b=c=d=1/2时,原不等式左边的四个项都等于1/12,由此出发凑“等因子”.对于某些中学数学中的常见问题也可用这种方法解决,降低问题解决对知识的要求. �例6 设a,b,c,d∈R+,a+b+c+d=8,求M= + + + 的最大值. �分析:猜想当a=b=c=d=2时M取得最大值,这时M中的4个项都等于3.要求M的最大值,需将M向“≤”的方向进行不等变换,由此可得3 ≤(3+4a+1)/2=2a+2,3 ≤2b+2,3 ≤2c+2,3 ≤2d+2.于是3M≤2(a+b+c+d)+8=24,∴M≤8.当且仅当a=b=c=d时等号成立,所以M的最大值为8. �当然,例6利用平方平均数不小于算术平均数是易于求解的,但需要高中数学教材外的知识.利用较少的知识解决较多的问题,是数学自身的追求,而且从教学上考虑,可以更好地培养学生的数学能力.先有猜想,后有设计,再有证法,也是数学地思考问题的基本特征. �3.引发矛盾,启迪探索 �在利用基本不等式求最大值或最小值时,都必须考虑等号能否取得,这不仅是解题的规范要求,而且往往对问题的解决提供有益的启示.特别当解题的过程似乎顺理成章,但等号成立的条件却发生矛盾或并不一定成立.这一新的问题情景将启迪我们对问题的进一步探索. �例7 设a,b∈R+,2a+b=1,则2 -4a2-b2有(). ��A.最大值1/4� B.最小值1/4 ��C.最大值( -1)/2� D.最小值( -1)/2 � 分析:由4a2+b2≥4ab,得原式≤2 -4ab=-4( )2+2 =-4( -1/4)2+1/4≤1/4.若不对不等变换中等号成立的条件进行研究,似已完成解题任务,而且觉得解题过程颇为自然,但若研究一下等号成立的条件,则出现了矛盾:要使4a2+b2≥4ab中的等号成立,则应有2a=b=1/2,这时 = /4≠1/4,第二个“≤”中的等号不能成立.这一矛盾使我们感觉到解题过程的错误,促使我们另辟解题途径.事实上,原式=2 -(2a+b)2+4ab=4ab+2 -1,而由1=2a+b≥2 得0< ≤ /4,ab≤1/8,∴原式≤ /2+1/2-1=( -1)/2,故选�C. 本文来自论文大学网

203 评论

boboyoung1983

小学数学教与学过程需要实施研究性学习,基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境。本文是我为大家整理的浅谈小学数学教学法论文,欢迎阅读! 浅谈小学数学教学法论文篇一 1、研究性学习内涵 小学数学教与学过程需要实施研究性学习,即在教学中,主张教师设定具体的课题,通过一系列活动,学生已掌握的知识与技巧及搜索的相关信息等进行综合,学生自主地建构与更新知识体系,培养学生探索能力及自主学习的精神。基于研究性学习的小学数学教学需要小学数学教师在具体教学中创设一个类似于科学研究的情境,引导同学们通过科研的 方法 搜集与获取大量知识信息,解决课题的疑问与问题,实现学生探索性的建构知识体系,实现学生的学习过程与科学研究过程相结合。 2、基于研究性学习的小学数学教学 措施 营造研究性学习的学习环境 营造研究性学习的学习环境包括两方面,第一,宽松、愉快、平等的环境;第二,合作、探究的环境。前者的作用主要是调动学生研究性学习的兴趣,而后者是加强生生间、师生间的交流。例如,学习“立体图形的认识”章节时,可以通过演示课件“立体图形的认识”章节时,利用汇总的方式向学生展示不同的图形,使学生在动画中提升学习的兴趣。例如,学习“立体图形的认识”时,第一步:(1)教师可以引导同学以组为单位一起回忆:a援长方体的特征援b援想一想你是从那几方面对长方体的特征进行 总结 的。(点:有八个顶点;线:有十二条棱,相对的四条棱的长度相等;面:有六个面都是长方形,有时有相对的两个面都是正方形,每相对的两个面面积相等;)。(2)教师总结:我们通过点、线、面三个方面对长方体的特征进行总结。第二步:(1)教师可以引导同学以组为单位一起回忆:a援正方体的特征。b援想一想你是从那几方面对正方体的特征进行总结的。(点:有八个顶点;线:有十二条棱,每条棱的长度都相等;面:有六个面都是正方形,并且每个面的面积都相等;)。第三步,共同讨论:(1)长方体与正方体有什么共同特征呢(2)长方体与正方体有什么不同之处呢?相同点:长方体与正方体都有6个面,12条棱和8个顶点援不同点:a援“线”上的不同点:长方体的棱分别是相对的4条棱相等,分别叫做长方体的长、宽、高,而正方体的12条棱全部相等,叫做正方体的棱长。b援“面”上的不同点:长方体至少有4个面是长方形,而正方体的6个面都是正方形。(3)长方体与正方体有什么关系?正方体是特殊的长方体。通过这样的环境的研究性学习,使学生进一步认识学过的一些立体图形的特征,掌握不同立体图形之间的异同,使学生能够灵活运用所学过的立体图形的特征解决简单的实际问题,进一步发展学生的空间观念。 列举与搜集与生活联系的例子 数学来源于生活,数学知识解决生活中的问题。列举与搜集与生活联系的例子引导学生进行探究性的学习与解决,从而不断的调动学生学习数学的兴趣和热情,不断的利用自己掌握的知识去积极的解决与探索生活中的相关问题,最终提升学生发现问题与解决问题的能力。例如,学习“量的计量”章节时,教师可以通过“同学们,改革开放以来,我国采用了国际上通用的法定计量单位,你能 说说 这是为什么吗”来导入新课程;利用自学的方式进行具体知识点的简单熟悉;并且利用如下例题来引导学生进行探究性的练习:一枝铅笔长176();一个 篮球 场占地420();一张课桌宽52();一个火柴盒的体积是21();一间教师的面积是48();一种保温瓶的容量是2()10麻袋大米约1();l个鸡蛋约();1棵白菜约();1名六年级学生体重是40();测量两件家具,记录各边的长度,算出表面积和体积;称出两件炊具的质量并记录下来;调查父母的出生年、月、日,算一算平年还是闰年;记录自己从家到学校所用的时间。 创设与给予学生研究性学习的条件 如果教师不能创设与给予学生研究性学习的条件,就不能真正的调动学生探索与实践热情,也不能调动学生的创新能力,学生研究性学习的效果将不明显。所以,基于研究性学习的小学数学教学措施需要包括创设与给予学生研究性学习的条件。例如,学习“条形统计图”章节时,教师可以搜集条形、拆线和扇形统计图等统计图的具体表现形式,并让学生搜集各年级的学生数量且绘制条形统计图:一年级:一班40人,二班38人;二年级:一班40人,二班40人;三年级:一班41人,二班38人,三班36人;四年级:一班36人,二班38人;五年级:一班44人,二班39人;六年级:一班37人,二班42人。或者教师可以给出学生如下数据让学生根据表中的数据。通过此过程,可以使学生有机会主动地绘制条形统计图,掌握制条形统计图的一般步骤,能看图准确地回答问题。 建构学生研究性学习的平台 小学数学研究性学习过程中,需要教师为学生建构学生研究性学习的平台,引领学生观察生活、关注身边数学问题。例如,学习“量的计量”章节时,教师可以专门设置研究性学习的课堂,使学生能够进一步理解采用法定计量单位的重要意义,系统的复习与掌握长度、面积、体积、质量、时间单位,以及具体换算,及各种计量单位间的进率。 3、结论 综合上述的内容我们可知,基于性研究性的学习教学可以使学生实现有效学习,并指导学生怎么运用知识与建立知识联系,有效地获取新知识,形成知识体系。基于性研究性的学习教学这种方法是一项被广泛宣传与运用的 学习方法 。 作者:周小如 工作单位:浙江省温州市龙湾区永昌第三小学 浅谈小学数学教学法论文篇二 一、创新教学法让学生自主学习 小孩子从小就要进入学校里面学习,但是没有人问过他们愿不愿意,换句话说,他们是在老师、家长的压力下才会“认真学习”的。这种学习过程叫做被动学习,学习的效果效率低,且浪费时间。传统的教学就是单纯的“灌输式”学习,没能充分发挥学生们的主动性。采用创新 教学方法 ,让学生成为课堂的主人。一位 教育 家曾经说,最好的教育是让被教育者不知道自己已经受教。数学老师要把问题摆在同学们的面前,让他们去思考解决这些问题。在解决问题的过程中,学生可以向老师寻求帮助,老师给予一定的指导。老师上课之前要给同学们设计好开课的问题,并将学生分为几个小组,让他们先自己选择题目解决,然后老师再做总结。这就要求老师所出题目要蕴含本节课的知识,或者是能够回顾上一节课的知识。小组成员的分配也要合理,不能够顾此失彼,要公平公正。这样能够让学生们进行自主的探索,从各个方面思考解决问题的方案,然后再讨论。这种过程能够增强学生们自主学习和合作学习的能力,还能够加强学生解决问题的能力。 二、创新教学法培养学生的创新能力 虽然说数学是一门严谨的科学,但是,那是对解题的答案或方法的正确性来说的。对于一个数学问题我们可以从多个方面思考,然后采用多种解决方法。但是传统的小学数学教育,严重禁锢了学生的 创新思维 。遇到一个问题,老师就会将标准方法告诉学生,然后同学们按照这个思路进行思考。等下次遇到类似的问题的时候,学生就可以“照葫芦画瓢”,按照之前的解题模式做出正确的答案。虽然这样的方法能够增加同学们做题的正确率,但是却减少了学生创新的机会。如果长此以往,数学问题解题方法永远不可能简单化。创新教学法不但是一种教学方法的创新,更是一种创新思想的传递。就像是“蝴蝶效应”一样,用老师的创新带动学生的创新。采用不同传统教学方法的创新教学法,将数学多维立体地展示在学生的面前,让他们自由地思考、自由地解题。比起传统的套模板式的做题方法,自己想出的方法可能既复杂又麻烦,但是这是敢于尝试的表现,这种精神才是学习所需要的精神,这种“不做对不放弃”的毅力才是学习所需的毅力。老师在教学时要将自己和学生摆在一样的高度,只有这样老师才会去认真听取学生的解题意见,才会采纳学生的解题方法,这样才能够促进创新。另外对于教学方法的创新,老师也可以听取学生的意见。不要认为学生不懂得教学,他们的观点缺乏实践性。但是毕竟教学的对象是学生,他们了解自己喜欢和能够接受怎样的教学方式,知道怎样的教学才能引起自己的兴趣。也许学生给老师提的建议比较“理想化”,但是只要老师稍加修改,或是将里面可行的元素融入自己的教学当中,那么就能够找到一套适合学生的教学新方法。对于别的老师的创新教学法也要合理利用,绝对不能照搬。因为使用的对象不一样,要根据自己的学生加以修改,因材施教。 作者:唐世明 工作单位:重庆市巫山县石碑小学 浅谈小学数学教学法论文篇三 1.合理分组 合作学习,是体现一个团体的合作能力,可让学生明白团结合作的重要性。合作学习首先一定要合理地分组。一般而言,合作学习小组4人最合适,最好遵循“就近原则”选择小组成员。如果是年纪较小的学生,则可两人一组,即同桌合作。合理建组便于成员合作,同时可以激发各组间的竞争,这样易于形成和谐的学习气氛,同学们之间可以强弱互补,共同进步。建组应注意优、中、差生之间的组合和学生之间的性格、 兴趣 爱好 、学习能力与身高等各种外在因素的互补,同时需遵循“组内异质,组间同质”的原则[1]。在小组分配完成后,要进行民主推荐,选出各个小组的组长,并依照性格特点分配组内其他成员的负责要点与任务,这样的分配保证每个成员都能发挥自己最佳状态,使任务快速圆满完成。在每个成员完成各自的任务后,应让他们尝试另一个角色中的工作,使他们能弥补自己的不足,得到更多的 经验 [2]。例如,在讲授“小小的商店”这一章节中,教师可以在班级内开起“小商店”,学生的各种小玩具、文具等均为商店里的物品,而学生则扮演顾客、店长、店员、收银员等各种用角色,此时教师需对学生进行合理分组,如分为顾客组、收银员组、店员组等。在这个教学活动中,如果不分组或分组不科学,则可易产生混乱的局面,降低合作学习效率。 2.科学开展小组合作 在小学数学教学中,不是每个学习内容都需要合作学习的方式,教师应从实际情况出发,比如学生的接受能力、教学的环境设备、适合的时机等因素,选择适合的方式让学生进行学习。如果教学内容在学生较容易接受的范围内,就让学生个人独立完成学习或进行集体授课;如果知识点多、学习复杂的内容,就可以小组合作完成,即合作学习[3]。学生是否能充分体会合作学习中的乐趣,主要取决教师是否采用了有效的引导方式。教师在展开活动的过程中,要尊重每位参与的学生,无论“差生”或优生,都要做到一视同仁,特别是在学习上成绩比较差的学生,更要尽心保护他们脆弱的心灵,尽量消除他们自卑感等。教师还应及时了解各组学习情况,并对每个小组作出评价、建议与鼓励。而能使合作学习有成效的重要条件之一是:充裕的学习时间。教师让小组进行操作、研究、探讨、交流思考的过程中,要使每个学生都能有发言和提问的机会,使学生能相互补充,互相进步,这需要教师留有充裕的时间让他们进行自主思考,在解决问题后才会豁然开朗,记忆深刻,合作学习才会有显著的成效[4]。例如在讲授“圆的认识”这一章节时,教师可将全班分为五组,让学生分组找出生活中是圆形的物体,看哪组找出的物体最多,在讲解关于“圆”的相关知识后,教师又可分组进行合作学习,即让学生分组进行练习,看哪一组能够较准确地画出圆形,准确地测量出所画的圆形的半径与直径。教师在这个过程中需要对学生进行积极引导。 3.重视个人与小组评价 在合作学习中,教师对学生的评价、建议与鼓励都是至关重要的,这对学生以后的学习起到很大的积极作用,所以教师应该重视对学生的评价,更应慎重考虑才可以说出每一句评语。教师要做到这样,首先要将个人评价与小组评价进行有机结合,既要注重个人评价,又要注重小组评价,肯定个人在小组合作中的重要性,对学生之间出现的合作互助关系给予表扬;其次要注重学习过程中和学习结果的评价,尤其要注重学习过程中的评价,肯定学生合作过程中的表现,并对合作过程中存在的问题给予相应的指导,使学生及时纠正错误[5]。综上所述,小组合作是小学数学课堂教学中有效教学的方法,其不仅可以让小学生学习到基础的数学知识,而且可以培养小学生的合作精神,同时可以活跃课堂氛围,提高学生的学习热情,有助于提高教学效率和质量。 作者:王景坤 工作单位:赤峰市巴林左旗杨家营子寄宿制学校

129 评论

幸福、定格

呃呃,如如学数学的要重视基础提高能力,积极经验

163 评论

相关问答

  • 浅谈小学数学教学论文

    数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学

    古蒂guti 3人参与回答 2023-12-07
  • 浅谈法学毕业论文范文大全

    法学是一门严谨的学科,各位法学本科毕业生们,大家知道怎么书写一份毕业论文吗?以下是法学本科论文范文,请参考! 关于违约责任的归责原则【1】 论文关键词:违约责任

    小女孩不懂事 3人参与回答 2023-12-09
  • 浅谈城市规划论文

    城市设计、城市规划一体论 论文摘要: 当前,城市设计已成为规划界、建筑界的热点研究领域。在理论上可谓百家争鸣,呈现出从未有过的繁荣局面;在实践上,从南到北,全国

    zdx82627811 3人参与回答 2023-12-10
  • 浅谈质数与合数的论文

    整数 分数 小数 质数 合数 奇数 偶数 负数 整数 小数 分数 整数分为奇数 偶数 质数 合数 正数 负数 分数真分数 假分数 小数 有限小数 无限小数

    青烟缭绕 3人参与回答 2023-12-08
  • 浅谈导数及其应用毕业论文

    导数的广泛应用,为我们解决函数问题提供了有力的工具,用导数可以解决函数中的最值问题,不等式问题,还可以解析几何相联系,可以在知识的网络交汇处设计问题。

    温江成都银行 3人参与回答 2023-12-06