• 回答数

    4

  • 浏览数

    335

吹吹再吹
首页 > 学术论文 > 无人汽车的研究技术论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

吾是土豆泥

已采纳

姓名:陈心语  学号:21009102266 书院:海棠1号书院 转自: 人工智能在自动驾驶技术中的应用 - 云+社区 - 腾讯云 () 【嵌牛导读】本文介绍了人工智能在无人驾驶方面的应用。 【嵌牛鼻子】人工智能运用于无人驾驶。 【嵌牛提问】人工智能在无人驾驶方面中有什么运用呢? 【嵌牛正文】 随着技术的快速发展云计算、大数据、人工智能一些新名词进入大众的视野,人工智能是人类进入信息时代后的又一技术革命正受到越来越广泛的重视。作为人工智能技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆。自动驾驶技术将成为未来汽车一个全新的发展方向。 本文将主要介绍人工智能技术在自动驾驶中的应用领域,并对自动技术的发展前景进行一个简单的分析。 人工智能是一门起步晚却发展快速的科学。20 世纪以来科学工作者们不断寻求着赋予机器人类智慧的方法。现代人工智能这一概念是从英国科学家图灵的寻求智能机发展而来,直到1937年图灵发表的论文《理想自动机》给人工智能下了严格的数学定义,现实世界中实际要处理的很多问题不能单纯地是数值计算,如言语理解与表达、图形图像及声音理解、医疗诊断等等。 1955 年Newell 和Simon 的Logic Theorist证明了《数学原理》中前52 个定理中的38 个。Simon 断言他们已经解决了物质构成的系统如何获得心灵性质的问题( 这种论断在后来的哲学领域被称为“强人工智能”) ,认为机器具有像人一样逻辑思维的能力。1956 年,“人工智能”( AI) 由美国的JohnMcCarthy 提出,经过早期的探索阶段,人工智能向着更加体系化的方向发展,至此成为一门独立的学科。 五十年代,以游戏博弈为对象开始了人工智能的研究;六十年代,以搜索法求解一般问题的研究为主;七十年代,人工智能学者进行了有成效的人工智能研究;八十年代,开始了不确定推理、非单调推理、定理推理方法的研究;九十年代,知识表示、机器学习、分布式人工智能等基础性研究方面都取得了突破性的进展。 人工智能在自动驾驶技术中的应用概述 人工智能发展六十年,几起几落,如今迎来又一次热潮,深度学习、计算机视觉和自然语言理解等各方面的突破,使得许多曾是天方夜谭的应用成为可能,无人驾驶汽车就是其中之一。作为人工智能等技术在汽车行业、交通领域的延伸与应用,无人驾驶近几年在世界范围内受到了产学界甚至国家层面的密切关注。目前,人工智能在汽车自动驾驶技术中也有了广泛应用。 自动驾驶汽车依靠人工智能、视觉计算、雷达、监控装置和全球定位系统协同合作,它是一个集环境感知、规划决策、多等级辅助驾驶等功能于一体的综合系统, 它集中运用了计算机、现代传感、信息融合、通讯、人工智能及自动控制等技术, 是典型的高新技术综合体。 这种汽车能和人一样会“思考” 、“判断”、“行走” ,让电脑可以在没有任何人类主动的操作下,自动安全地操作机动车辆 。 按照 SAE (美国汽车工程师协会)的分级,共分为:驾驶员辅助、部分自动驾驶、有条件自动驾驶、高度自动驾驶、完全自动驾驶五个层级。 第一阶段:驾驶员辅助 目的是为驾驶者提供协助,包括提供重要或有益的驾驶相关信息,以及在形势开始变得危急的时候发出明确而简洁的警告。现阶段大部分ADAS主动安全辅助系统,让车辆能够实现感知和干预操作。例如防抱死制动系统(ABS)、电子稳定性控制(ESC)、车道偏离警告系统、正面碰撞警告系统、盲点信息系统等等,此时车辆是能够通过摄像头、雷达传感器获知周围交通状况,进而做出警示和干预。 第二阶段:部分自动驾驶 车辆通过摄像头、雷达传感器、激光传感器等等设备获取道路以及周边交通信息,车辆会自行对方向盘和加减速中的多项操作提供驾驶支援,在驾驶者收到警告却未能及时采取相应行动时能够自动进行干预,其他操作交由驾驶员,实现人机共驾,但车辆不允许驾驶员的双手脱离方向盘。例如自适应巡航控制(ACC)、车道保持辅助系统(LKA)、自动紧急制动(AEB)系统、车道偏离预警(LDW)等。 第三阶段:有条件自动驾驶 由自动驾驶系统完成驾驶操作,根据路况条件所限,必要时发出系统请求,必须交由驾驶员驾驶。 第四阶段:高度自动驾驶 由自动驾驶系统完成所有驾驶操作,根据系统请求,驾驶员可以不接管车辆。车辆已经可以完成自动驾驶,一旦出现自动驾驶系统无法招架的情形,车辆也可以自行调整完成自动驾驶,驾驶员不需要干涉。 第五阶段:完全自动驾驶 自动驾驶的理想形态,乘客只需提供目的地,无论任何路况,任何天气,车辆均能够实现自动驾驶。这种自动化水平允许乘客从事计算机工作、休息和睡眠以及其他娱乐等活动,在任何时候都不需要对车辆进行监控。 自动驾驶的实现 车辆实现自动驾驶,必须经由三大环节: 第一,感知。 也就是让车辆获取,不同的系统需要由不同类型的车用感测器,包含毫米波雷达、超声波雷达、红外雷达、雷射雷达、CCD \CMOS影像感测器及轮速感测器等来收集整车的工作状态及其参数变化情形。 第二,处理。 也就是大脑将感测器所收集到的资讯进行分析处理,然后再向控制的装置输出控制讯号。 第三,执行。 依据ECU输出的讯号,让汽车完成动作执行。其中每一个环节都离不开人工智能技术的基础。 人工智能在自动驾驶定位技术中的应用 定位技术是自动驾驶车辆行驶的基础。目前常用的技术包括 线导航、磁导航、无线导航、视觉导航、导航、激光导航等。 其中磁导航是目前最成熟可靠的方案,现有大多数应用均采用这种导航技术。磁导航技术通过在车道上埋设磁性标志来给车辆提供车道的边界信息,磁性材料具有好的环境适应性,它对雨天,冰雪覆盖,光照不足甚至无光照的情况都可适应,不足之处是需要对现行的道路设施作出较大的改动,成本较高。同时磁性导航技术无法预知车道前方的障碍,因而不可能单独使用。 视觉导航对基础设施的要求较低,被认为是最有前景的导航方法。在高速路和城市环境中视觉方法受到了较大的关注。 人工智能在自动驾驶图像识别与感知中的应用 无人驾驶汽车感知依靠传感器。目前传感器性能越来越高、体积越来越小、功耗越来越低,其飞速发展是无人驾驶热潮的重要推手。反过来,无人驾驶又对车载传感器提出了更高的要求,又促进了其发展。 用于无人驾驶的传感器可以分为四类: 雷达传感器 主要用来探测一定范围内障碍物(比如车辆、行人、路肩等)的方位、距离及移动速度,常用车载雷达种类有激光雷达、毫米波雷达和超声波雷达。激光雷达精度高、探测范围广,但成本高,比如Google无人车顶上的64线激光雷达成本高达70多万元人民币;毫米波雷达成本相对较低,探测距离较远,被车企广泛使用,但与激光雷达比精度稍低、可视角度偏小;超声波雷达成本最低,但探测距离近、精度低,可用于低速下碰撞预警。 视觉传感器 主要用来识别车道线、停止线、交通信号灯、交通标志牌、行人、车辆等。常用的有单目摄像头、双目摄像头、红外摄像头。视觉传感器成本低,相关研究与产品非常多,但视觉算法易受光照、阴影、污损、遮挡影响,准确性、鲁棒性有待提高。所以,作为人工智能技术广泛应用的领域之一的图像识别,也是无人驾驶汽车领域的一个研究热点。 定位及位姿传感器 主要用来实时高精度定位以及位姿感知,比如获取经纬度坐标、速度、加速度、航向角等,一般包括全球卫星定位系统(GNSS)、惯性设备、轮速计、里程计等。现在国内常用的高精度定位方法是使用差分定位设备,如RTK-GPS,但需要额外架设固定差分基站,应用距离受限,而且易受建筑物、树木遮挡影响。近年来很多省市的测绘部门都架设了相当于固定差分基站的连续运行参考站系统(CORS),比如辽宁、湖北、上海等,实现了定位信号的大范围覆盖,这种基础设施建设为智能驾驶提供了有力的技术支撑。定位技术是无人驾驶的核心技术,因为有了位置信息就可以利用丰富的地理、地图等先验知识,可以使用基于位置的服务。 车身传感器 来自车辆本身,通过整车网络接口获取诸如车速、轮速、档位等车辆本身的信息。 人工智能在自动驾驶深度学习中的应用 驾驶员认知靠大脑,无人驾驶汽车的“大脑”则是计算机。无人车里的计算机与我们常用的台式机、笔记本略有不同,因为车辆在行驶的时候会遇到颠簸、震动、粉尘甚至高温的情况,一般计算机无法长时间运行在这些环境中。所以无人车一般选用工业环境下的计算机——工控机。 工控机上运行着操作系统,操作系统中运行着无人驾驶软件。如图1所示为某无人驾驶车软件系统架构。操作系统之上是支撑模块(这里模块指的是计算机程序),对上层软件模块提供基础服务。 支撑模块包括:虚拟交换模块,用于模块间通信;日志管理模块,用于日志记录、检索以及回放;进程监控模块,负责监视整个系统的运行状态,如果某个模块运行不正常则提示操作人员并自动采取相应措施;交互调试模块,负责开发人员与无人驾驶系统交互。 图:某无人驾驶车软件系统架构 除了对外界进行认知之外,机器还必须要能够进行学习。深度学习是无人驾驶技术成功地基础,深度学习是源于人工神经网络的一种高效的机器学习方法。深度学习可以提高汽车识别道路、行人、障碍物等的时间效率,并保障了识别的正确率。通过大量数据的训练之后,汽车可以将收集到的图形,电磁波等信息转换为可用的数据,利用深度学习算法实现无人驾驶。 在无人驾驶汽车通过雷达等收集到数据时,对于原始的训练数据要首先进行数据的预处理化。计算均值并对数据的均值做均值标准化、对原始数据做主成分分析、使用PCA白化或ZCA白化。例如:将激光传感器收集到的时间数据转换为车与物体之间的距离;将车载摄像头拍摄到的照片信息转换为对路障的判断,对红绿灯的判断,对行人的判断等;雷达探测到的数据转换为各个物体之间的距离。 将深度学习应用于无人驾驶汽车中, 主要包含以下步骤: 1. 准备数据,对数据进行预处理再选用合适的数据结构存储训练数据和测试元组; 2. 输入大量数据对第一层进行无监督学习; 3. 通过第一层对数据进行聚类,将相近的数据划分为同一类,随机进行判断; 4. 运用监督学习调整第二层中各个节点的阀值,提高第二层数据输入的正确性; 5. 用大量的数据对每一层网络进行无监督学习,并且每次用无监督学习只训练一层,将其训练结果作为其更高一层的输入。 6. 输入之后用监督学习去调整所有层。 人工智能在自动驾驶信息共享中的应用 首先, 利用无线网络进行车与车之间的信息共享。通过专用通道,一辆汽车可以把自己的位置、路况实时分享给队里的其它汽车,以便其它车辆的自动驾驶系统,在收到信息后做出相应调整。 其次, 是3D路况感应,车辆将结合超声波传感器、摄像机、雷达和激光测距等技术,检测出汽车前方约5米内地形地貌,判断前方是柏油路还是碎石、草地、沙滩等路面,根据地形自动改变汽车设置。 另外, 汽车还将能进行自动变速,一旦探测到地形发生改变,可以自动减速,路面恢复正常后,再回到原先状态。 汽车信息共享所收集到的交通信息量将非常巨大,如果不对这些数据进行有效处理和利用,就会迅速被信息所湮没。因此需要采用数据挖掘、人工智能等方式提取有效信息,同时过滤掉无用信息。考虑到车辆行驶过程中需要依赖的信息具有很大的时间和空间关联性,因此有些信息的处理需要非常及时。 人工智能应用于自动驾驶技术中的优势 人工智能算法更侧重于学习功能,其他算法更侧重于计算功能。 学习是智能的重要体现,学习功能是人工智能的重要特征,现阶段大多人工智能技术还处在学的阶段。如前文所说,无人驾驶实际上是类人驾驶,是智能车向人类驾驶员学习如何感知交通环境,如何利用已有的知识和驾驶经验进行决策和规划,如何熟练地控制方向盘、油门和刹车。 从感知、认知、行为三个方面看, 感知部分难度最大, 人工智能技术应用最多。感知技术依赖于传感器,比如摄像头,由于其成本低,在产业界倍受青睐。以色列一家名叫Mobileye的公司在交通图像识别领域做得非常好,它通过一个摄像头可以完成交通标线识别、交通信号灯识别、行人检测,甚至可以区别前方是自行车、汽车还是卡车。 人工智能技术在图像识别领域的成功应用莫过于深度学习,近几年研究人员通过卷积神经网络和其它深度学习模型对图像样本进行训练,大大提高了识别准确率。Mobileye目前取得的成果,正是得益于该公司很早就将深度学习当作一项核心技术进行研究。 认知与控制方面,主要使用人工智能领域中的传统机器学习技术,通过学习人类驾驶员的驾驶行为建立驾驶员模型,学习人的方式驾驶汽车。 无人驾驶技术所面临的挑战和展望 在目前交通出行状况越来越恶劣的背景下,“无人驾驶”汽车的商业化前景,还受很多因素制约。 主要有: 1. 法规障碍 2. 不同品牌车型间建立共同协议,行业缺少规范和标准 3. 基础道路状况,标识和信息准确性,信息网络的安全性 4. 难以承受的高昂成本 此外,“无人驾驶”汽车的一个最大特点,就是 车辆网络化、信息化程度极高 ,而这也对电脑系统的安全问题形成极大挑战。一旦遇到电脑程序错乱或者信息网络被入侵的情况,如何继续保证自身车辆以及周围其他车辆的行驶安全,这同样是未来急需解决的问题。 虽然无人驾驶技术还存在着很多挑战,但是无人驾驶难在感知,重在“学习”,无人驾驶的技术水平迟早会超过人类,因为稳、准、快是机器的先天优势,人类无法与之比拟。

254 评论

阿滋猫波斯猫

行业主要上市企业:目前国内自动行业的上市公司主要有北汽蓝谷(600733)、长城汽车(601633)、舜宇光学()、欧菲光(002456)、韦尔股份(300990)、国瑞科技(600562)、四维图新(002405)、德赛西威(002920)

本文核心数据:蔚来NIO Pilot自动辅助驾驶系统功能、自动驾驶分级标准、造车新势力历代车型及自动驾驶系统配置

大部分消费者被夸大宣传的“自动驾驶”误导

2021年8月12日下午,上善若水投资管理公司创始人、意统天下餐饮管理公司创始人、美一好品牌管理公司创始人林文钦,驾驶蔚来ES8汽车启用自动驾驶功能(NOP领航状态)后,在深海高速涵江段发生交通事故,不行逝世,终年31岁。

一时间,大众舆论的关注焦点从车祸转到了“自动驾驶”。而蔚来则表示,NOP领航功能并不等同于“自动驾驶”,而是自动驾驶辅助功能。

NOP是导航系统、高精地图与蔚来NIO Pilot自动辅助驾驶系统的深度融合,在Pilot功能已实现的巡航车速控制、车距保持、转向辅助和转向灯控制变道功能的基础之上,使车辆在高精地图覆盖范围内的大部分高速公路及城市高架路段内,按照导航规划的路径实现自动汇入主路、变道以及自动切换至下一条高速/高架等功能。

NOP的正常工作非常依赖于摄像头、毫米波雷达等传感器的状态。如发现车辆提示传感器受限,或怀疑传感器出现异常,则NOP的功能可能会失灵。NOP的正常工作非常依赖于摄像头、毫米波雷达等传感器的状态。如发现车辆提示传感器受限,或怀疑传感器出现异常,则NOP的功能可能会失灵。

目前市场上通用的自动驾驶分类方式采用的是国际汽车工程师学会(SAE)于2014年制定的J3016自动驾驶分级标准。SAE对自动化的描述分为6个等级,即L0级至L5级,以动态驾驶任务(DynamicDrivingTask,DDT)为核心来进行自动驾驶分类。

L0到L2为辅助驾驶,L3到L5属于自动驾驶。目前L2级别的高级辅助驾驶技术上基本实现,渗透率正在逐步提升,自动驾驶技术已经开始向L3级别迈进,实现从辅助驾驶(ADAS)到自动驾驶(ADS)的飞跃。

在中国,工信部也同样与2020年3月发布了《汽车驾驶自动化分级》,将自动驾驶分成了6个等级。

目前“自动驾驶”已经成为了新能源汽车在技术上宣传的卖点之一。特斯拉进入中国市场后,将“自动驾驶比人类驾驶更安全”的概念灌输到了部分消费者的心里。作为造国内造车新势力龙头之一的未来,在2020年9月北京车展上发布了(NOP)。2021年1月,小鹏汽车业推出了NGP(自动导航辅助驾驶功能),理想也在2021年5月底发布新款理想ONE是把NOA(自动导航辅助驾驶)当做卖点。

新晋车企的介入也倒逼传统车企在智能化浪潮下进行改革。传统车企一方面在汽车智能化上积极布局,投入研发经费;另一方面,凭借技术积累,与谷歌、百度、阿里、华为等互联网企业展开合作,布局智能汽车领域。

政策和市场将推动自动驾驶加速发展

从目前车企自动驾驶技术的发展来看,基本仍处于L1或者L2级别,也就是辅助驾驶,随时需要人类驾驶员接管。对于“自动驾驶”黑科技的营销也给消费者在购买和使用时造成了误解。

2021年,8月12日,工信部发布《工业和信息化部关于加强智能网联汽车生产企业及产品准入管理的意见》,明确规定“企业生产具有驾驶辅助和自动驾驶功能的汽车产品的,应当明确告知车辆功能及性能限制、驾驶员职责、人机交互设备指示信息等信息”,并对具备自动驾驶产品的汽车提出各项具体要求。如若发现生产、销售的汽车产品存在数据安全、网络安全、在线升级安全、驾驶辅助和自动驾驶安全等严重问题的,将依法依规立即停止相关产品的生产、销售,采取措施进行整改,并及时向相关部门报告。

目前,无论是中国,还是全球其他国家和地区,都在积极推动自动驾驶的落地。在企业加大科研投入的同时,中央和地方政策也加速落地。未来,在政策和市场的推动下,我国自动驾驶行业将加速成熟,“自动驾驶”所造成的车祸也将逐渐减少。

以上数据参考前瞻产业研究院《中国智能网联汽车(ICV)行业发展模式与投资战略规划分析报告》。

235 评论

武装的蔷薇1

当前,无人驾驶技术已成为汽车领城的发展趋势,障碍物探测是无人驾驶技术中的亚要环节。激光留达作为一种主到探测方法,具有测量速度快,精度高等优点,在障碍检测方面优势明显。本文以无人驾驶车障得探测为应用背最,针对扫描式多线徽光雷达成本较高、测距精度较低的不足,开展了激光香达测距技术研究,综合考应车载环境以及实际应用需求,设计了一种扫描式测距激光省达系统。论文主要工作如下:(1)对比分析了脉冲式和相位.式激光测距原理,根据无人驾驶车障碍探测的实时性要求,选择脉冲式测距方案,综合考忠影响脉冲式测量精度的关键因素,设计了一种改进型的时刻鉴别以及时间间隔测量方法,优化系统采测性能。(2)针对半导体激光器和光电探测器的具体特性,设计了发射端和接收端光学系统,在 zEMAx 软件中进行光线追迹仿真,验证了其对发射光束的准直压缩和对回波光束的有效聚焦,从而可以提高系统探测范围和精度。(3)设计并搭建了窄脉冲激光发射和信号接收电路系统,系统以 FPGA 器件和C8051F206 单片机作为主控制器,可实现重复频常为 1kHz,脉宽为 60ns 的窄脉冲激光发射:为提高接收系统的信噪比,选用高灵敏度的 APD 作为光电探测器,结合信号调理电路,从而实现微弱回波信号的有效提取:设计高精度时间差测量模块和机械旋转模块,验证扫描式激光雷达系统的测距性能。(4)为了验证测距激光雷达在无人驾驶车障碍探测中的性能,在 Visual Studio 2010平台下开发了基于 MFC 的数据重构界面,根据测量得到的距商数据实现障碍物信息重构。搭建实验平台,对近处目标物进行测量,测试并验证系统样机的探测性能,最终结果表明,所设计的脉冲式激光雷达系统基本满足预期的探测要求,并具有一定的实际应用价值。

220 评论

春天里的流星

无人驾驶技术的发展与现状如下:

无人驾驶技术的发展

随着工程师们突破一个又一个难关,无人驾驶的时代总有一天会到来。无人驾驶可以避免人为的不正确操作,响应速度和准确率都比人高,因此无人驾驶技术可以避免交通事故的发生概率。

虽然目前的无人驾驶技术偶尔会引发事故,但随着科技的发展,无人驾驶技术也在不断进步。未来,无人驾驶技术肯定可以避免事故,甚至在关键时刻挽救车内成员的生命。

无人驾驶技术的现状

现在很多品牌的汽车都可以实现自动驾驶,未来的汽车一定是无人驾驶的。特斯拉、宝马、奔驰等品牌的汽车已经能够实现无人驾驶,这主要依靠摄像头、传感器、gps定位系统和电子控制系统。许多汽车带着12级自动驾驶离开工厂。

在一些特殊情况下,汽车可以自动行驶,而无需车主控制汽车。还有很多车有自动泊车功能,类似于无人驾驶功能。停车时,车主只需换挡。现在也有很多公司涉足无人驾驶技术领域。

无人驾驶

无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内的以计算机系统为主的智能驾驶仪来实现无人驾驶的目的。第一辆能真正无人驾驶的汽车出现于1980年代。1984年,卡内基美隆大学推动Navlab计划与ALV计划。

218 评论

相关问答

  • 汽车节能技术研究本科论文

    随着汽车行业技术的不断发展,汽车发动机技术也在不断的提高。下面是我为大家精心推荐的汽车发动机技术论文 范文 ,希望能对大家有所帮助。汽车发动机技术论文范文篇

    joyzhou512 3人参与回答 2023-12-11
  • 汽车驾驶节能技术研究论文

    影响机车运行油耗的因素很多,其中驾驶员的责任心和驾驶技术水平对油耗有较直接的影响。据测定,驾驶技术娴熟的比驾驶技术一般的驾驶员平均节约燃油8%~10%。因此,驾

    框框拆拆远行车 3人参与回答 2023-12-11
  • 汽车电子控制新技术研究论文

    汽车电子驻车是在近几年刚刚发展起来的新兴汽车电子控制制动技术。下面是我为大家精心推荐的汽车电子驻车技术论文,希望能够对您有所帮助。 浅谈汽车电子驻车制动系统 摘

    大萌的饰界 4人参与回答 2023-12-07
  • 汽车诊断技术课题研究论文

    1、普通的OBD诊断,不少厂家在做。这种远程诊断有不少厂家你搜素下OBD远程远程诊断就有,有兴趣找我合作也行。2、专业的汽车诊断,只能由车厂提供,一般是提供给4

    纳殇誰鯟 3人参与回答 2023-12-06
  • 无人驾驶技术的发展与研究论文

    “虽然国外起步较早,但中国无人驾驶技术与其相比差距并不算大。”国防科技大学教授贺汉根说。早在2011年,由国防科技大学研发的无人车完成了从长沙到武汉的高速公路全

    嘚啵嘚啵的sissi 4人参与回答 2023-12-11