懒癌末期
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。
根据样本量计算公式,不难知道,样本量的大小不取决于总体的多少,而取决于:
(1) 研究对象的变化程度;
(2) 所要求或允许的误差大小(即精度要求);
(3) 要求推断的置信程度。
样本量n=C²σ²/p²
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
样本容量的大小涉及到调研中所要包括的单元数。样本容量是对于你研究的总体而言的,是在抽样调查中总体的一些抽样。
比如:中国人的身高值为一个总体,你随机取一百个人的身高,这一百个人的身高数据就是总体的一个样本。某一个样本中的个体的数量就是样本容量。注意:不能说样本的数量就是样本容量,因为总体中的若干个个体只组成一个样本。样本容量不需要带单位。
在假设检验里样本容量越大越好。但实际上不可能无穷大,就像你研究中国人的身高不可能把所有中国人的身高都量一量一样。
扩展资料:
样本量应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
选择合适的样本容量,既能满足模型估计的需要,又能减轻收集数据的困难,是一个重要的实际问题。
(1) 最小样本容量
所谓“最小样本容量”,即从普通最小二乘法原理出发,欲得到参数估计量,不管其质量如何,所要求的样本容量的下限,它是:n≥k+1
其中,k为解释变量的数目。
(2) 满足基本要求的样本容量
一般经验认为,当n≥30或者至少n≥3(k+1)时,才能满足模型估计的基本要求。
合理确定样本容量的意义:
1.样本容量过大,会增加调查工作量,造成人力、物力、财力、时间的浪费;
2.样本容量过小,则样本对总体缺乏足够的代表性,从而难以保证推算结果的精确度和可靠性;
3.样本容量确定的科学合理,一方面,可以在既定的调查费用下,使抽样误差尽可能小,以保证推算的精确度和可靠性;另一方面,可以在既定的精确度和可靠性下,使调查费用尽可能少,保证抽样推断的最大效果。
参考资料:百度百科——样本量
糖醋jiang
1、概率抽样
又称随机抽样,指在总体中排除人的主观因素,给予每一个体一定的抽取机会的抽样。其特点为,抽取样本具有一定的代表性,可以从调查结果推断总体;操作比较复杂,需要更多的时间,而且往往需要更多的费用。
2、非概率抽样(Non-probability sampling)
又称非随机抽样,指根据一定主观标准抽取样本,令总体中每个个体的被抽取不是依据其本身的机会,而是完全决定于调研者的意愿。
其特点为不具有从样本推断总体的功能,但能反映某类群体的特征,是一种快速、简易且节省的数据收集方法。当研究者对总体具有较好的了解时可以采用此方法。
或是总体过于庞大、复杂,采用概率方法有困难时,可以采用非概率抽样来避免概率抽样中容易抽到实际无法实施或“差”的样本,从而避免影响对总体的代表度。
扩展资料
常用的非概率抽样方法有以下四类:
1、方便抽样(Convenience sampling)
指根据调查者的方便选取的样本,以无目标、随意的方式进行。例如:街头拦截访问(看到谁就访问谁);个别入户项目谁开门就访问谁。
优点:适用于总体中每个个体都是“同质”的,最方便、最省钱;可以在探索性研究中使用,另外还可用于小组座谈会、预测问卷等方面的样本选取工作。
缺点:抽样偏差较大,不适用于要做总体推断的任何民意项目,对描述性或因果性研究最好不要采用方便抽样。
2、判断抽样(Judgment sampling)
指由专家判断而有目的地抽取他认为“有代表性的样本”。例如:社会学家研究某国家的一般家庭情况时,常以专家判断方法挑选“中型城镇”进行。
也有家庭研究专家选取某类家庭进行研究,如选三口之家(子女正在上学的);在探索性研究中,如抽取深度访问的样本时,可以使用这种方法。
优点:适用于总体的构成单位极不相同而样本数很小,同时设计调查者对总体的有关特征具有相当的了解(明白研究的具体指向)的情况下,适合特殊类型的研究(如产品口味测试等);操作成本低,方便快捷,在商业性调研中较多用。
缺点:该类抽样结果受研究人员的倾向性影响大,一旦主观判断偏差,则根易引起抽样偏差;不能直接对研究总体进行推断。
3、配额抽样(Quota sampling)
指先将总体元素按某些控制的指标或特性分类,然后按方便抽样或判断抽样选取样本元素。相当于包括两个阶段的加限制的判断抽样。在第一阶段需要确定总体中的特性分布(控制特征),通常,样本中具备这些控制特征的元素的比例与总体中有这些特征的元素的比例是相同的。
通过第一步的配额,保证了在这些特征上样本的组成与总体的组成是一致的。在第二阶段,按照配额来控制样本的抽取工作,要求所选出的元素要适合所控制的特性。例如:定点街访中的配额抽样。
优点:适用于设计调查者对总体的有关特征具有一定的了解而样本数较多的情况下,实际上,配额抽样属于先“分层”(事先确定每层的样本量)再“判断”(在每层中以判断抽样的方法选取抽样个体);费用不高,易于实施,能满足总体比例的要求。
缺点:容易掩盖不可忽略的偏差。
4、滚雪球抽样(Snowball sampling)
指先随机选择一些被访者并对其实施访问,再请他们提供另外一些属于所研究目标总体的调查对象,根据所形成的线索选择此后的调查对象。
第一批被访者是采用概率抽样得来的,之后的被访者都属于非概率抽样,此类被访者彼此之间较为相似。例如:如在目前中国的小轿车车主等。
优点:可以根据某些样本特征对样本进行控制,适用寻找一些在总体中十分稀少的人物。
缺点:有选择偏差,不能保证代表性。
参考资料来源:百度百科-概率抽样
参考资料来源:百度百科-非概率抽样
妩媚的撕纸座
问题一:怎么确定抽样调查中的样本量? 确定样本的数量是抽样调查中的重要环节,在充分满足调查内容要求情况下合理的确定样本量不能不说是摆在每个调查公司面前的重要课题,过多的样本量设计只会给客户增加经济负担,对友邦顾问来讲,我们确定样本量的原则是:一是达到调查目的,二是给客户省钱。 概率抽样的基本原则是:样本量越大,抽样误差就越小,而样本量越大,则成本就越高。根据数理统计规律,样本量增加呈直线递增的情况下(样本量增加一倍,成本也增加一倍),而抽样误差只是样本量相对增长速度的平方根递减。因此,样本量的设计并不是越大越好,通常会受到经济条件的制约。 通常,在概率抽样的情况下,友邦顾问在确定样本量时会遇到如下情况: 预算:预算的多少直接影响着调查样本量的设计,通常某一项调查为满足调查要求必须有一个最低的预算指标。如果低于这个指标的预算,不能满足调查最低精度的话,友邦顾问建议要放弃这项调查任务。 经验:一些客户会经常要求调查公司完成 200 、 300 、 400 等特定的样本量。这种样本量确定的方法一方面可能考虑了调查误差,另一方面也可能是凭着以前的调查经验。在这种情况下,如果友邦顾问认为样本量的设计不能满足精度要求的时候,我们的项目经理会建议所需要增加的样本量,否则调查的结果会出现偏差。 子群分析:在任何样本量确定的过程中,都必须考虑被调查样本的子群数。也就是说,当被调查样本群子群数比较多的时候,样本量就必须相应扩大。如:某一项调查 400 个样本量是基本满足要求的,但如果将这些样本量划分为男和女各占 50 %的话,那么,每个子群只有 200 个样本。如果进一步按年龄组细分的话,假设是两个年龄组,那每一个子群只有 100 个样本,这样的样本量就不能满足最初设计的要求了,因此必须按照子群要求设计样本量则是最合理的。 统计分析:友邦顾问在确定样本量时通常在考虑上述具体情况下,会考虑如下统计方面的因素,即:总体调查标准差;抽样允许的误差和预期置信度。 样本量确定公式:在充分考虑所有统计因素基础上,友邦公司通常采用的简单随机抽样(特别是估计平均值时)的公式为: N = Z 2 σ 2 / E 2 其中, N 为适合的样本量; Z 为调查置信度; σ 为总体标准差; E 为抽样误差范围 在解决“比例”方面的调查问题时,友邦顾问所采用的抽样公式为: N = Z 2 [P(1-P)] / E 2 其中, N 为适合的样本量; Z 为调查置信度; P 为样本的离散程度; E 为抽样误差范围 和 问题二:怎样计算样本量 一般根据临界t值、方差S2和允许误差d,计算 样本量n=t×S2/d2 问题三:怎样确定样本数量 我来回答:对于13万的人,做调查,得取多少样本,这个得看你要求的精确度,统计学上有这样的一套公式, zjsec/peixun/ 而对于市场调查; 在市场研究中,常常有客户和研究者询问:“要掌握市场总体情况,到底需要多少样本量?”,或者说“我要求调查精度达到95%,需要多少样本量?”。对此,我往往感到难以回答,因为要解决这个问题,需要考虑的因素是多方面的:研究的对象,研究的主要目的,抽样方法,调查经费…。有人说,北京这么大,上千万人口,我们怎么也得做一万人的访问才能代表北京市吧。根据统计学原理,完全不必。只要在500-1000左右就够了。当然前提是,我们要按照科学的方法去抽样。 根据市场调查的经验,市场潜力等涉及量比较严格的调查所需样本量较大,而产品测试,产品定价,广告效果等人们间彼此差异不是特别大或对量的要求不严格的调查所需样本量较小些。 样本量的大小涉及到调研中所要包括的人数或单元数。确定样本量的大小是比较复杂的问题,既要有定性的考虑也要有定量的考虑。 从定性的方面考虑样本量的大小,其考虑因素有:决策的重要性,调研的性质,变量个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。具体地说,更重要的决策,需要更多的信息和更准确的信息,这就需要较大的样本;探索性研究,样本量一般较小,而结论性研究如描述性的调查,就需要较大的样本;收集有关许多变量的数据,样本量就要大一些,以减少抽样误差的累积效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析比只限于对总样本分析,所需样本量要大得多。 具体确定样本量还有相应的统计学公式,根据样本量计算公式,我们知道,样本量的大小不取决于总体的多少,而取决于(1) 研究对象的变动程度;(2) 所要求或允许的误差大小;(3) 要求推断的置信程度。也就是说,当所研究的现象越复杂,差异越大时,样本量要求越大;当要求的精度越高,可推断性要求越高时,样本量越大。因此,如果不同城市分别进行推断时,大城市多抽,小城市少抽这种说法原则上是不对的。在大城市抽样太大是浪费,在小城市抽样太少没有推断价值。 总之,在确定抽样方法和样本量的时候,既要考虑调查目的,调查性质,精度要求(抽样误差)等,又要考虑实际操作的可实施性,非抽样误差的控制、经费预算等。专业调查公司在这方面会根据您的情况及调查性质,进行综合权衡,达到一个最优的样本量的选择。 实际研究中的一些经验 根据一些学者的研究,以及远东零点在市场研究中的经验,市场调查中确定样本量通常的做法是: 1、通过对方差的估计,采用公式计算所需样本量,主要做法有: 2、用两步抽样,在调查前先抽取少量的样本,得到标准差S的估计,然后代入公式中,得到下一步抽样所需样本量n; 3、如果有以前类似调查的数据,可以使用以前调查的方差作为总体方差的估计。 4、根据经验,确定样本量,主要方法有: 5、如果以前有人做过类似的研究,初学者可以参照前人的样本。 6、如果是大型城市、省市一级的地区性研......>> 问题四:分层抽样如何确定样本容量 30分 先将总体的单位按某种特征分为若干次级总体(层),然后再从每一层内进行单纯随机抽样,组成一个样本的统计学计算方法叫分层抽样。 分层抽样确定样本容量原则: 1、以调查所要分析和研究的主要变量或相关变量作为分层标准。 2、以保证各层内部同质性强和各层之间的异质性强、突出总体内在结构的变量作为分层变量。 3、以那些已有明显层次区分的变量作为分层变量。 例如,一个单位的职工有500人,其中不到35岁有125人,35岁至49岁的有280人,50岁以上的有95人.为了了解这个单位职工与身体状况有关的某项指标,要从中抽取一个容量为100的样本,由于职工年龄与这项指标有关,决定采用分层抽样方法进行抽取.因为样本容量与总体的个数的比为1:5,所以在各年龄段抽取的个数依次为125/5,280/5,95/5,即25,56,19。 求解过程: 解: S1:100 / 500 = S2: 125* 25 ――――――――(不到35岁) 280* 56 ――――――――(35岁至49岁) 95* 19 ――――――――(50岁以上) S3: 所以:50岁的抽19人 问题五:样本容量如何确定? 10分 样本是从总体中抽出的部分单位 *** ,这个 *** 的大小叫做样本量。 一般而言,样本的容量大的话,样本的误差就小,反之则大。 通常样本单位数大于30的样本可以称为大样本,小于30的样本则称为小样本。在实际应用中,我们应该根据调查的目的认真考虑样本量的大小。 样本容量的大小涉及调研中包括的单元数。从定性的方面考虑样本量,因素有:决策的重要性,调研的性质,变数个数,数据分析的性质,同类研究中所用的样本量,发生率,完成率,资源限制等。决策越重要,需要更多和更准确的信息,就需要用较大的样本;探索性研究,样本量一般较小,结论性研究则需要较大的样本;收集有关许多变数的数据,样本量就要大一些,减少抽样误差的积累效应;如果需要采用多元统计方法对数据进行复杂的高级分析,样本量就应当较大;如果需要特别详细的分析,如做许多分类等,也需要大样本。针对子样本分析时,需要的样本量比对总样本分析要大许多。 样本量的确定有相应的统计学公式,具体取决于 1. 研究对象的变化程度 2. 精确度要求(即允许误差的大小) 3. 推断的置信程度 公式: 已知总体方差,重复抽样时,至少应抽取的样本量为n。(给定极限误差和概率误差) 已知总体方差,不重复抽样时,至少应抽取的样本量为n。 其中,Z为概率度,N为样本总数,α为极限误差。 问题六:做市场调研怎样确定样本量? 样本量要看你的项目是要做什么的吧,要看做多大范围。具体的样本量是跟你要对市场的了解程度有关系的,但不是说越多越好。我记得之前在叫达闻通用的公司网站上看过有关样本量的研究。建议你去看一下吧。
追梦的风筝123
具体确定样本量还有相应的统计学公式,不同的抽样方法对应不同的公式。
根据样本量计算公式,不难知道,样本量的大小不取决于总体的多少,而取决于:
(1) 研究对象的变化程度;
(2) 所要求或允许的误差大小(即精度要求);
(3) 要求推断的置信程度。
样本量n=C²σ²/p²
P — 精度(Precision),也称精确度,由审计师设定,代表样本与总体之间的可接受误差范围。在属性抽样中,精度以百分比表示,在变量抽样中,精度用一个数值表示。精度值越大,样本量越小,总体误差值就越大;反之,精度值越小,样本量越大,总体误差值就越小,但增加了抽样工作量。
样本量是指总体中抽取的样本元素的总个数,应用于统计学、数学、物理学等学科。样本量大小是选择检验统计量的一个要素。由抽样分布理论可知,在大样本条件下,如果总体为正态分布,样本统计量服从正态分布;如果总体为非正态分布,样本统计量渐近服从正态分布。
参考资料:百度百科-样本量
课题研究方向一般是指学生在校期间,或者相关科研工作者在申报撰写论文过程中需要明确的研究方向。 课题研究方向应在所研究课题历史基础上提出自己独特或者有所创新的研究
指论文调查中的问卷调查样本,抽样样本量的大小对调查的准确度有很大的影响。一定程度上“样本量越多越好”,但毕竟是抽样调查(Sampling Survey),就是以
论文框架由以下几部分组成: 1、介绍 简要地总结论文主题,说明为什么这个主题有价值,也许还可以概述一下你的主要结果。 2、背景信息(可选) 简短地介绍背景信息是
关于论文写作常用研究方法指导 毕业论文的写作方法种类比较多,而常用的有调查研究法、定量分析法、实证研究法、文献研究法。具体选择方法根据自身论文的专业和学科领域做
1、了解自己感兴趣的课题 能够研究自己感兴趣的内容是一件很幸运的事情。日常学习与翻阅专业文献,可以帮助你更好地找到自己的兴趣点。有了感兴趣的内容,就要付之实践。