精灵酱酱儿
随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。下面是我整理的机器人智能技术论文,希望你能从中得到感悟!
刍议智能机器人及其关键技术
【摘 要】文章介绍了机器人的定义,阐述了智能机器人研究领域的关键技术,最后展望了智能机器人今后的发展趋势。
【关键词】智能机器人;信息融合;智能控制
一、机器人的定义
自机器人问世以来,人们就很难对机器人下一个准确的定义,欧美国家认为机器人应该是“由计算机控制的通过编程具有可以变更的多功能的自动机械”;日本学者认为“机器人就是任何高级的自动机械”,我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器。”目前国际上对机器人的概念已经渐趋一致,联合国标准化组织采纳了美国机器人协会(RIA:Robot Institute of America)于1979 年给机器人下的定义:“一种可编程和多功能的,用来搬运材料、零件、工具的操作机;或是为了执行不同的任务而具有可改变和可编程动作的专门系统。”概括说来,机器人是靠自身动和控制能力来实现各种功能的一种机器。
二、智能机器人关键技术
随着社会发展的需要和机器人应用领域的扩大,人们对智能机器人的要求也越来越高。智能机器人所处的环境往往是未知的、难以预测的,在研究这类机器人的过程中,主要涉及到以下关键技术:
(1)多传感器信息融合。多传感器信息融合技术是近年来十分热门的研究课题,它与控制理论、信号处理、人工智能、概率和统计相结合,为机器人在各种复杂、动态、不确定和未知的环境中执行任务提供了一种技术解决途径。机器人所用的传感器有很多种,根据不同用途分为内部测量传感器和外部测量传感器两大类。内部测量传感器用来检测机器人组成部件的内部状态,包括:特定位置、角度传感器;任意位置、角度传感器;速度、角度传感器;加速度传感器;倾斜角传感器;方位角传感器等。外部传感器包括:视觉(测量、认识传感器)、触觉(接触、压觉、滑动觉传感器)、力觉(力、力矩传感器)、接近觉(接近觉、距离传感器)以及角度传感器(倾斜、方向、姿式传感器)。多传感器信息融合就是指综合来自多个传感器的感知数据,以产生更可靠、更准确或更全面的信息。经过融合的多传感器系统能够更加完善、精确地反映检测对象的特性,消除信息的不确定性,提高信息的可靠性。融合后的多传感器信息具有以下特性:冗余性、互补性、实时性和低成本性。目前多传感器信息融合方法主要有贝叶斯估计、卡尔曼滤波、神经网络、小波变换等。
(2)导航与定位。在机器人系统中,自主导航是一项核心技术,是机器人研究领域的重点和难点问题。导航的基本任务有3点:一是基于环境理解的全局定位:通过环境中景物的理解,识别人为路标或具体的实物,以完成对机器人的定位,为路径规划提供素材;二是目标识别和障碍物检测:实时对障碍物或特定目标进行检测和识别,提高控制系统的稳定性;三是安全保护:能对机器人工作环境中出现的障碍和移动物体作出分析并避免对机器人造成的损伤。机器人有多种导航方式,根据环境信息的完整程度、导航指示信号类型等因素的不同,可以分为基于地图的导航、基于创建地图的导航和无地图的导航3类。根据导航采用的硬件的不同,可将导航系统分为视觉导航和非视觉传感器组合导航。视觉导航是利用摄像头进行环境探测和辨识,以获取场景中绝大部分信息。目前视觉导航信息处理的内容主要包括:视觉信息的压缩和滤波、路面检测和障碍物检测、环境特定标志的识别、三维信息感知与处理。非视觉传感器导航是指采用多种传感器共同工作,如探针式、电容式、电感式、力学传感器、雷达传感器、光电传感器等,用来探测环境,对机器人的位置、姿态、速度和系统内部状态等进行监控,感知机器人所处工作环境的静态和动态信息,使得机器人相应的工作顺序和操作内容能自然地适应工作环境的变化,有效地获取内外部信息。
(3)路径规划。路径规划技术是机器人研究领域的一个重要分支。最优路径规划就是依据某个或某些优化准则(如工作代价最小、行走路线最短、行走时间最短等),在机器人工作空间中找到一条从起始状态到目标状态、可以避开障碍物的最优路径。路径规划方法大致可以分为传统方法和智能方法两种。传统路径规划方法主要有以下几种:自由空间法、图搜索法、栅格解耦法、人工势场法。大部分机器人路径规划中的全局规划都是基于上述几种方法进行的,但这些方法在路径搜索效率及路径优化方面有待于进一步改善。人工势场法是传统算法中较成熟且高效的规划方法,它通过环境势场模型进行路径规划,但是没有考察路径是否最优。智能路径规划方法是将遗传算法、模糊逻辑以及神经网络等人工智能方法应用到路径规划中,来提高机器人路径规划的避障精度,加快规划速度,满足实际应用的需要。其中应用较多的算法主要有模糊方法、神经网络、遗传算法、Q学习及混合算法等,这些方法在障碍物环境已知或未知情况下均已取得一定的研究成果。
(4)机器人视觉。视觉系统是自主机器人的重要组成部分,一般由摄像机、图像采集卡和计算机组成。机器人视觉系统的工作包括图像的获取、图像的处理和分析、输出和显示,核心任务是特征提取、图像分割和图像辨识。而如何精确高效的处理视觉信息是视觉系统的关键问题。目前视觉信息处理逐步细化,包括视觉信息的压缩和滤波、环境和障碍物检测、特定环境标志的识别、三维信息感知与处理等。其中环境和障碍物检测是视觉信息处理中最重要、也是最困难的过程。机器人视觉是其智能化最重要的标志之一,对机器人智能及控制都具有非常重要的意义。目前国内外都在大力研究,并且已经有一些系统投入使用。
(5)智能控制。随着机器人技术的发展,对于无法精确解析建模的物理对象以及信息不足的病态过程,传统控制理论暴露出缺点,近年来许多学者提出了各种不同的机器人智能控制系统。机器人的智能控制方法有模糊控制、神经网络控制、智能控制技术的融合(模糊控制和变结构控制的融合;神经网络和变结构控制的融合;模糊控制和神经网络控制的融合;智能融合技术还包括基于遗传算法的模糊控制方法)等。近几年,机器人智能控制在理论和应用方面都有较大的进展。在模糊控制方面,等人论证了模糊系统的逼近特性,首次将模糊理论用于一台实际机器人。模糊系统在机器人的建模控制、对柔性臂的控制、模糊补偿控制以及移动机器人路径规划等各个领域都得到了广泛的应用。在机器人神经网络控制方面,CMCA(Cere-bella Model Controller Articulation)应用较早的一种控制方法,其最大特点是实时性强,尤其适用于多自由度操作臂的控制。
(6)人机接口技术。智能机器人的研究目标并不是完全取代人,复杂的智能机器人系统仅仅依靠计算机来控制目前是有一定困难的,即使可以做到,也由于缺乏对环境的适应能力而并不实用。智能机器人系统还不能完全排斥人的作用,而是需要借助人机协调来实现系统控制。因此,设计良好的人机接口就成为智能机器人研究的重点问题之一。人机接口技术是研究如何使人方便自然地与计算机交流。为了实现这一目标,除了最基本的要求机器人控制器有1个友好的、灵活方便的人机界面之外,还要求计算机能够看懂文字、听懂语言、说话表达,甚至能够进行不同语言之间的翻译,而这些功能的实现又依赖于知识表示方法的研究。因此,研究人机接口技术既有巨大的应用价值,又有基础理论意义。目前,人机接口技术已经取得了显著成果,文字识别、语音合成与识别、图像识别与处理、机器翻译等技术已经开始实用化。另外,人机接口装置和交互技术、监控技术、远程操作技术、通讯技术等也是人机接口技术的重要组成部分,其中远程操作技术是一个重要的研究方向。
三、总结与展望
机器人是自动化领域的主题之一,人们几十年来对机器人的开发和研究,使机器人技术取得了巨大的进步。随着人工智能、智能控制和计算机技术的发展,机器人的应用领域必将不断扩大,性能不断提高,在未来的生产、生活、科研当中会发挥更重要的作用。
参 考 文 献
[1]孙华,陈俊风,吴林.多传感器信息融合技术及其在机器人中的应用[J].传感器技术.2003,22(9):1~4
[2]王灏,毛宗源.机器人的智能控制方法[M].北京:国防工业出版社,2002
[3]金周英.关于我国智能机器人发展的几点思考[J].机器人技术与应用.2001(4):5~7
点击下页还有更多>>>机器人智能技术论文
MM头Selina
近年来,世界各个发达国家竞相发展机械电子工程,以提高本国的成产力水平,机械电子工程也不断向智能化、网络化、柔性化发展,机械电子工程与人工智能的完美融合给这一产业带来了革命性的变革和惊人的经济效益。以下是我精心整理的人工智能论文读书报告的相关资料,希望对你有帮助!
机械电子工程与人工智能的关系探究
摘 要 近年来,世界各个发达国家竞相发展机械电子工程,以提高本国的成产力水平,机械电子工程也不断向智能化、网络化、柔性化发展,机械电子工程与人工智能的完美融合给这一产业带来了革命性的变革和惊人的经济效益。本文分别从机械电子工程、人工智能、两者融合3个方面探讨了这一趋势。
关键词 机械电子工程;人工智能;信息处理
0 引言
传统的机械工程一般分为两大类,包括动力和制造。制造类工程包括机械加工、毛坯制造和装配等生产过程,而动力类工程包括各式发电机。电子工程与传统的机械工程相比来言是较新的学科,两者于上世纪逐渐结合在一起。最初,电子工程与机械工程是以块与块的分离模式或功能替代的模式相结合,随着科学技术的不断向前推动,传统的机械工程与现代的电子工程通过信息技术有机的结合起来,形成了现在的机械电子工程学科。随着人工智能技术的不断发展,机械电子工程由传统的能量连接、动能连接逐步发展为信息连接,使得机械电子工程具有了一定的人工智能。传统的机械电子工程通过现代的科学技术进入到一个新的发展领域,同时,人工智能技术伴随着机械电子工程的日益复杂,也得到了长足的发展。
1 机械电子工程
机械电子工程的发展史
20世纪是科学发展最辉煌的时期,各类学科相互渗透、相辅相成,机械电子工程学科也在这一时期应运而生,它是由机械工程与电子工程、信息工程、智能技术、管理技术相结合而成的新的理论体系和发展领域。随着科学技术的不断发展,机械电子工程也变的日益复杂。
机械电子工程的发展可以分为3个阶段:第一阶段是以手工加工为主要生产力的萌芽阶段,这一时期生产力低下,人力资源的匮乏严重制约了生产力的发展,科学家们不得不穷极思变,引导了机械工业的发展。第二阶段则是以流水线生产为标志的标准件生产阶段,这种生产模式极大程度上提高了生产力,大批量的生产开始涌现,但是由于对标准件的要求较高,导致生产缺乏灵活性,不能适应不断变化的社会需求。第三阶段就是现在我们常见的现代机械电子产业阶段,现代社会生活节奏快,亟需灵活性强、适应性强、转产周期短、产品质量高的高科技生产方式,而以机械电子工程为核心的柔性制造系统正是这一阶段的产物。柔性制造系统由加工、物流、信息流三大系统组合而成,可以在加工自动化的基础之上实现物料流和信息流的自动化。
机械电子工程的特点
机械电子工程是机械工程与电子技术的有效结合,两者之间不仅有物理上的动力连结,还有功能上的信息连结,并且还包含了能够智能化的处理所有机械电子信息的计算机系统。机械电子工程与传统的机械工程相比具有其独特的特点:
1)设计上的不同。机械电子工程并非是一门独立学科,而是一种包含有各类学科精华的综合性学科。在设计时,以机械工程、电子工程和计算机技术为核心的机械电子工程会依据系统配置和目标的不同结合其他技术,如:管理技术、生产加工技术、制造技术等。工程师在设计时将利用自顶向下的策略使得各模块紧密结合,以完成设计;2)产品特征不同。机械电子产品的结构相对简单,没有过多的运动部件或元件。它的内部结构极为复杂,但却缩小了物理体积,抛弃了传统的笨重型机械面貌,但却提高了产品性能。
机械电子工程的未来属于那些懂得运用各种先进的科学技术优化机械工程与电子技术之间联系的人,在实际应用当中,优化两者之间的联系代表了生产力的革新,人工智能的发展使得这一想法变成可能。
2 人工智能
人工智能的定义
人工智能是一门综合了控制论、信息论、计算机科学、神经生理学、心理学、语言学、哲学等多门学科的交叉学科,是21世纪最伟大的三大学科之一。尼尔逊教授将人工智能定义为:人工智能是关于怎样表示知识和怎样获得知识并使用知识的科学。温斯顿教授则认为:人工智能就是研究如何使计算机去做过去只有人才能做的智能工作。至今为止,人工智能仍没有一个统一的定义,笔者认为,人工智能是研究通过计算机延伸、扩展、模拟人的智能的一门科学技术。
人工智能的发展史
萌芽阶段
17世纪的法国科学家发明了世界上第一部能进行机械加法的计算器轰动世界,从此之后,世界各国的科学家们开始热衷于完善这一计算器,直到冯诺依曼发明第一台计算机。人工智能在这一时期发展缓慢,但是却积累了丰富的实践经验,为下一阶段的发展奠定了坚实的基础。
第一个发展阶段
在1956年举办的“侃谈会”上,美国人第一次使用了“人工智能”这一术语,从而引领了人工智能第一个兴旺发展时期。这一阶段的人工智能主要以翻译、证明、博弈等为主要研究任务,取得了一系列的科技成就,LISP语言就是这一阶段的佼佼者。人工智能在这一阶段的飞速发展使人们相信只要通过科学研究就可以总结人类的逻辑思维方式并创造一个万能的机器进行模仿。
挫折阶段
60年代中至70年代初期,当人们深入研究人工智能的工作机理后却发现,用机器模仿人类的思维是一件非常困难的事,许多科学发现并未逃离出简单映射的方法,更无逻辑思维可言。但是,仍有许多科学家前赴后继的进行着科学创新,在自然语言理解、计算机视觉、机器人、专家系统等方面取得了卓尔有效的成就。1972年,法国科学家发现了Prolog语言,成为继LISP语言之后的最主要的人工智能语言。
第二个发展阶段
以1977年第五届国际人工智能联合会议为转折点,人工智能进入到以知识为基础的发展阶段,知识工程很快渗透于人工智能的各个领域,并促使人工智能走向实际应用。不久之后,人工智能在商业化道路上取得了卓越的成就,展示出了顽强的生命力与广阔的应用前景,在不确定推理、分布式人工智能、常识性知识表示方式等关键性技术问题和专家系统、计算机视觉、自然语言理解、智能机器人等实际应用问题上取得了长足的发展。
平稳发展阶段
由于国际互联网技术的普及,人工智能逐渐由单个主体向分布式主体方向发展,直到今天,人工智能已经演变的复杂而实用,可以面向多个智能主体的多个目标进行求解。
3 人工智能在机械电子工程中的应用
物质和信息是人类社会发展的最根源的两大因素,在人类社会初期,由于生产力水平低,人类社会以物质为首要基础,仅靠“结绳记事”的方法传递信息,但随着社会生产力的不断发展,信息的重要性不断被人们发现,文字成为传递信息最理想的途径,最近五十年间,网络的普及给信息传递带来了新的生命,人类进入到了信息社会,而信息社会的发展离不开人工智能技术的发展。不论是模型的建立与控制,还是故障诊断,人工智能在机械电子工程当中都起着处理信息的作用。
由于机械电子系统与生俱来的不稳定性,描述机械电子系统的输入与输出关系就变得困难重重,传统上的描述方法有以下几种:1)推导数学方程的方法;2)建设规则库的方法;3)学习并生成知识的方法。传统的解析数学的方法严密、精确,但是只能适用于相对简单的系统,如线性定常系统,对于那些复杂的系统由于无法给出数学解析式,就只能通过操作来完成。现代社会所需求的系统日益复杂,经常会同时处理几种不同类型的信息,如传感器所传递的数字信息和专家的语言信息。由于人工智能处理信息时的不确定性、复杂性,以知识为基础的人工智能信息处理方式成为解析数学方式的替代手段。
通过人工智能建立的系统一般使用两类方法:神经网络系统和模糊推理系统。神经网络系统可以模拟人脑的结构,分析数字信号并给出参考数值;而模糊推理系统是通过模拟人脑的功能来分析语言信号。两者在处理输入输出的关系上有相同之处也有不同之处,相同之处是:两者都通过网络结构的形式以任意精度逼近一个连续函数;不同之处是:神经网络系统物理意义不明确,而模糊推理系统有明确的物理意义;神经网络系统运用点到点的映射方式,而模糊推理系统运用域到域的映射方式;神经网络系统以分布式的方式储存信息,而模糊推理系统则以规则的方式储存信息;神经网络系统输入时由于每个神经元之间都有固定联系,计算量大,而模糊推理系统由于连接不固定,计算量较小;神经网络系统输入输出时精度较高,呈光滑曲面,而模糊推理系统精度较低,呈台阶状。
随着社会的不断发展,单纯的一种人工智能方法已经不能满足日益增长的社会需要,许多科学家开始研究综合性的人工智能系统。综合性的人工智能系统采用神经网络系统与模糊推理系统相结合的方法,取长补短,以获得更全面的描述方式,模糊神经网络系统便是一成功范例。模糊神经网络系统做到了两者功能的最大融合,使信息在网络各层当中找到一个最适合的完全表达空间。逻辑推理规则能够对增强节点函数,为神经网络系统提供函数连结,使两者的功能达到最大化。
4 结论
科学的不断发展带来的不仅是学科的高度细化、深化,而且是学科间的高度融合。人工智能就是各学科交叉与综合之后的结果,秉承这一天性,人工智能与机械电子工程自然的进行了完美融合,这一全新领域的发展必将引领世界潮流,促进生产力的飞速发展。
准备好充分的参考文献后开始书写,需要包括选题依据、设计内容、设计技术路线和预期成果。 具体写法: 1、首先,在写开题报告之前,要准备好充分的文献资料,即:开题的
重介质选煤工艺流程分析论文 在学习、工作中,许多人都有过写论文的经历,对论文都不陌生吧,论文对于所有教育工作者,对于人类整体认识的提高有着重要的意义。为了让您在
在二十一世纪的未来,宁波市室验小学的中心,有一座巨大的建筑物-大本钟。这不是大本钟的模仿,而是一座高科技的智能教学楼。这座楼分成一个个小小的圆,那是一个个教室。
你的论文准备往什么方向写,选题老师审核通过了没,有没有列个大纲让老师看一下写作方向?老师有没有和你说论文往哪个方向写比较好?写论文之前,一定要写个大纲,这样老师
开题报告的基本内容及其顺序: 论文的目的与意义、国内外研究概况、论文拟研究解决的主要问题、论文拟撰写的主要内容(提纲)、论文计划进度、其它。 一、题目 1、要将