• 回答数

    2

  • 浏览数

    137

雾霭流年
首页 > 学术论文 > 什么叫沉浸式体验论文模板

2个回答 默认排序
  • 默认排序
  • 按时间排序

魔神坛老佛爷

已采纳

VR技术在高职教学中的应用论文

vr技术其实就是VR,中文的意思就是虚拟现实,虚拟现实技术是一种能够创建和体验虚拟世界的计算机仿真技术,它利用计算机生成一种交互式的三维动态视景,其实体行为的仿真系统能够使用户沉浸到该环境中。下面我整理的VR技术在高职教学中的应用论文,欢迎阅读收藏。

论文摘要: 多媒体技术、计算机网络技术的出现给传统的教学模式带来了革命性的影响,VR技术在高职教学中的应用,可以大大地提高教学质量,促进学生实践能力的发展和提高。

目前各大高校的办学规模均在逐步扩大,多个校区并存的现象已成为现实,加之各个校区地理位置又较远,原有的教学资源就显然不能满足教学的需要,尤其是实验课存在的问题更为突出。教育部《关子全面提高高等职业教育教学质量的若干意见》中指出要充分利用现代信息技术开发虚拟工厂、虚拟实验。因此将VR技术和职业教育结合起来就成为必要。VR技术进人高职院校能有效地营造教学环境和实验环境,提高学生掌握知识技能的能力。本文阐述VR技术在高职教育中的应用。

1.VR的概念和特征

VR(VirtualReality,虚拟现实)是利用计算机、电子技术、图像技术、传感器技术、多媒体技术、人机接口技术及仿真技术等多种科学技术发展起来的计算机领域的最新技术,是一种可以创建和体验虚拟世界的计算机仿真系统。虚拟技术是一门富有挑战性的交叉技术、前沿科学和研究领域。目前虚拟技术已涉及到军事、教育、医学、心理学、商业、影视等领域,是21世纪的重要发展学科。

虚拟环境是利用计算机生成并控制的,因此人处在利用VR技术创建的虚拟环境之中和真实环境是没有差别的。VR具有3个最突出的特性:沉浸性(IllusionofImmersion)、构想性(Imagination)和交互性(Interactivity)。

1)沉浸性(IllusionofImmersion)沉浸感是指用户在纯自然的状态下借助交互设备和自身的感知觉系统对虚拟环境的投人程度。虚拟世界给人一种身临其境的感觉。

2)构想性(Imagination)指借助虚拟技术可以使用户沉浸其中并获得新的知识,从而使用户深化概念和萌发新意。因此说VR可以启发人创造性思维,使抽象概念具体化。

3)交互性(Interactivity)人们可以通过使用专门的输人和输出设备(主要通过数据手套、头盔、数据衣等)以自然地方式(如自身的语言、动作等)和虚拟世界中的对象进行交互操作和交流。

2虚拟现实技术在职业教育中的应用

职业教育不仅要给学生传授文化知识,更重要的是让学生掌握专业技术和技能,强调学生的生产实践能力,培养学生的动手能力是职业教育的特色和重点。

VR技术在教学中的应用表现在以下几个方面:

(1)虚拟实验室。利用VR技术可以构建各种虚拟实验室,缓解高职院校实验教学资源不足的问题,推动实验教学的现代化发展,可以使学生足不出户完成实验,却可以获得和真实环境下一样的实验体会,加深对实验教学内容的理解。虚拟实验室还可打破时间和空间的限制,例如学生可以进人犯罪现场,了解案发过程,这是其他的实验方法无法比拟的。虚拟实验既可以缩短时间,又可以获得直观、逼真的.效果。

(2)虚拟实物。职业教学中的很多试验设备比较昂贵,更新换代又比较快,有些仪器又比较容易坏,这就增加了教学费用。利用虚拟技术就可以为学生制作“虚拟”设备。虚拟设备逼近客观事实,向学生揭示事物的本质。例如在机械制图教学中,很多机械元件不方便拆卸,利用虚拟实物,老师可以通过“移植”、“借用”等教学方式就很容易让学生看到现象和本质。

(3)模拟训练。利用VR技术结合多媒体技术可以构建虚拟的实习环境,在这个虚拟的环境中进行驾驶、维修等职业技能训练。在该环境中,学生可以反复练习,发现自己存在的问题,通过多次的训练,掌握正确的操作方法。

(4)虚拟过程。用VR的方法来展现一些现实生活中无法看到的变化过程。学生通过自己的实验来控制事物的变化过程,完成所学知识的构建。

3VR技术在高职教育中的意义

在VR中,基于自然方式的交互作用和个别化的学习环境提高了学生的学习兴趣,学生既是一个观察者,又是一个积极的参与者。学生的各种感觉与虚拟的学习环境相互联系和作用,这就激发了学生的学习兴趣,增强了学习的效果。

在VR环境下,学习者的各个感官都在和虚拟的外部世界发生着作用,学生完全沉浸于虚拟现实创造的学习环境中。例如我们在讲网络中的数据传输时,可以利用VR来实现,学生可以设置数据的格式、数据流动的方向和交换的方式等,这样学生对网络的数据传输的理解会更深人。

4结语

职业教育中引人VR技术,适应我国职业教育发展的需求。在学校经费不足的情况下,利用多媒体技术、实物仿真技术与VR技术结合的方法,建立虚拟的现代化实验室,缓解了实验设备不足的问题,同时也突破了传统的教学手段,构建了一种全新的教学模式。

VR技术作为一门新兴的科学技术,它还在不断地前进和摸索。但VR技术自身的优点使我们相信,在职业技术教育中,VR技术将有非常广阔的发展前景。

拓展阅读

简介

所谓虚拟现实,顾名思义,就是虚拟和现实相互结合。从理论上来讲,虚拟现实技术(VR)是一种可以创建和体验虚拟世界的计算机仿真系统,它利用计算机生成一种模拟环境,使用户沉浸到该环境中。虚拟现实技术就是利用现实生活中的数据,通过计算机技术产生的电子信号,将其与各种输出设备结合使其转化为能够让人们感受到的现象,这些现象可以是现实中真真切切的物体,也可以是我们肉眼所看不到的物质,通过三维模型表现出来。因为这些现象不是我们直接所能看到的,而是通过计算机技术模拟出来的现实中的世界,故称为虚拟现实。

虚拟现实技术受到了越来越多人的认可,用户可以在虚拟现实世界体验到最真实的感受,其模拟环境的真实性与现实世界难辨真假,让人有种身临其境的感觉;同时,虚拟现实具有一切人类所拥有的感知功能,比如听觉、视觉、触觉、味觉、嗅觉等感知系统;最后,它具有超强的仿真系统,真正实现了人机交互,使人在操作过程中,可以随意操作并且得到环境最真实的反馈。正是虚拟现实技术的存在性、多感知性、交互性等特征使它受到了许多人的喜爱。

发展历史

1、第一阶段有声形动态的模拟是蕴涵虚拟现实思想的阶段

1929年,Edward Link设计出用于训练飞行员的模拟器;1956年,Morton Heilig开发出多通道仿真体验系统Sensorama。

2、第二阶段虚拟现实萌芽阶段

1965年,Ivan Sutherland发表论文“UltimateDisplay”(终极的显示);1968年,Ivan Sutherland研制成功了带跟踪的头盔式立体显示器(HMD);1972年,NolanBushell开发出第一个交互式电子游戏Pong。

3、第三阶段虚拟现实概念的产生和理论初步形成阶段

1977年,Dan Sandin等研制出数据手套SayreGlove;1984年,NASA AMES研究中心开发出用于火星探测的虚拟环境视觉显示器;1984年,VPL公司的JaronLanier首次提出“虚拟现实”的概念;1987年,JimHumphries设计了双目全方位监视器(BOOM)的最早原型。

4、第四阶段(1990年至今)虚拟现实理论进一步的完善和应用阶段

1990年,提出VR技术包括三维图形生成技术、多传感器交互技术和高分辨率显示技术;VPL公司开发出第一套传感手套“DataGloves”,第一套HMD“EyePhoncs”;21世纪以来,VR技术高速发展,软件开发系统不断完善,有代表性的如MultiGen Vega、Open Scene Graph、Virtools等。

分类

VR涉及学科众多,应用领域广泛,系统种类繁杂,这是由其研究对象、研究目标和应用需求决定的。从不同角度出发,可对VR系统做出不同分类。

1、根据沉浸式体验角度分类

虚拟现实沉浸式体验分为非交互式体验、人——虚拟环境交互式体验和群体——虚拟环境交互式体验等几类。该角度强调用户与设备的交互体验,相比之下,非交互式体验中的用户更为被动,所体验内容均为提前规划好的,即便允许用户在一定程度上引导场景数据的调度,也仍没有实质性交互行为,如场景漫游等,用户几乎全程无事可做;而在人——虚拟环境交互式体验系统中,用户则可用过诸如数据手套,数字手术刀等的设备与虚拟环境进行交互,如驾驶战斗机模拟器等,此时的用户可感知虚拟环境的变化,进而也就能产生在相应现实世界中可能产生的各种感受。

如果将该套系统网络化、多机化,使多个用户共享一套虚拟环境,便得到群体—虚拟环境交互式体验系统,如大型网络交互游戏等,此时的VR系统与真实世界无甚差异。

2、根据系统功能角度分类

系统功能分为规划设计、展示娱乐、训练演练等几类。规划设计系统可用于新设施的实验验证,可大幅缩短研发时长,降低设计成本,提高设计效率,城市排水、社区规划等领域均可使用,如VR模拟给排水系统,可大幅减少原本需用于实验验证的经费;展示娱乐类系统适用于提供给用户逼真的观赏体验,如数字博物馆,大型3D交互式游戏,影视制作等,如VR技术早在70年代便被Disney用于拍摄特效电影;训练演练类系统则可应用于各种危险环境及一些难以获得操作对象或实操成本极高的领域,如外科手术训练、空间站维修训练等。

315 评论

聪聪老头

《本文同步发布于“脑之说”微信公众号,欢迎搜索关注~~》 1、研究背景 增强运动想象的一种方法是动作观察,也就是观察与运动想象任务相关的身体部位的运动。先前的研究表明,镜像神经元通过模仿来进行动作的理解和学习,从而引起相应区域的激活。因此,当一个人观察到另一个实体反映想象的身体运动时,动作观察起到了诱导镜像神经元的刺激作用。 2D和3D运动的事件相关去同步化(ERD)模式有显著差异,3D可视化组的ERD增强。更丰富的可视化和对观察到的运动的更强的所有权可诱导更好的ERD发生。 近期,发表在《IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING》杂志上的一篇研究论文通过对握手动作的动作观察,探讨虚拟现实(VR)的丰富沉浸感是否会影响重复的运动想象训练。为了研究显示介质的不同是否会影响进行运动想象时的动作观察,研究者通过两种不同的显示器显示了相同的图形握手动作:沉浸式VR耳机和显示器。此外,该研究以图形情景为刺激,更加强调沉浸式VR中的错觉和具体化对运动想象训练中动作观察的影响。为了检查使用这两种不同介质时的大脑活动,研究者使用了EEG,并识别了感觉运动皮层诱发的神经信号的变化。为了测量不同运动想象任务中空间脑活动模式的可区分性,研究者应用了脑机接口中常用的机器学习技术来学习和区分不同类型的运动想象中的脑活动。 2、研究流程 研究者对每个参与者进行了两个实验,以调查在运动想象训练中使用沉浸式VR耳机提供动作观察是否对表现有影响: (1)基于沉浸式VR的运动想象(IVR-MI):利用沉浸式VR头戴式耳机为运动想象训练提供图形握手场景的实验。 (2)基于显示器显示的运动想象(MD-MI):在运动想象训练中使用非沉浸式显示器显示相同场景的实验。 以MD-MI结果为对照,分析VR对运动想象的影响。 被试 共有20名年龄在20岁到37岁之间的健康参与者参加了这两个实验。在实验之前,所有参与者还被要求使用较长时间的VR头戴式耳机,以确保他们在使用VR头戴式耳机时没有任何问题。参与者被随机分成两组,人数相等:A组在IVR-MI之前进行MD-MI,B组在MD-MI之前进行IVR-MI。为了降低前一实验影响后一实验成绩的可能性,后一实验至少在前一实验后7天进行。实验结果也要到两个实验结束时才向参与者透露,以避免产生任何可能影响表现的反馈。从每个参与者那里收集的数据都经过了目视检查,排除了其中两名参与者的数据,因为他们显示出广泛的噪音,最终总共留下了18名参与者进行分析。 方案 这个图形化的场景由两只虚拟的手和黑色背景上的箭头组成,是用Unity游戏引擎实现的。在每次实验之前,调整虚拟手的位置,使得两只虚拟手之间的距离大致等于参与者的肩宽(图1a)。 (1)IVR-MI设置:参与者戴上带电极的EEG帽后,佩戴Oculus Go,不使用垂直带,以防止重叠电极上的带子收紧。 (2)MD-MI设置:在参与者面前的桌子上放置一个带显示器臂的显示器,该显示器臂可提供三个自由度。每个参与者都可以自由调整显示器臂的角度。 每个参与者都可以在Unity应用程序中调整相机视角,以最大限度地提高虚拟手的所有权。参与者被要求将他们的手放在桌子上,这样他们自己的手就会被虚拟手重叠替代。 数据采集 BrainProducts的actiChamp和actiCAP被用来从每个参与者的头皮中检索脑电数据。数据以500Hz的采样率采样,有源电极按国际10-20系统放置。在整个实验过程中,记录了放置在感觉运动皮质周围的20个电极(FC5,C5,CP5,FC3,C3,CP3,FC1,C1,CP1,Cz,CPZ,FC2,C2,CP2,FC4,C4,CP4,FC6,C6,CP6)的脑电信号,接地电极和参考电极分别位于AFz和Fz位置(图1b)。用BrainVision记录脑电信号,并将每个电极的阻抗控制在5k以下,以获得高质量的数据。数据在8-25 Hz的频率之间进行带通滤波。在收集之后,然后通过在所有使用的电极位置上应用平均参考来重新参考EEG数据。将得到的预处理数据用于神经活动的分析。 实验设计 实验在一个黑暗、隔音的房间里进行,以最大限度地减少任何环境干扰。每个运动想象实验由六个阶段的10个连续的运动想象实验组成。如果需要,参与者可以在两次阶段之间休息。每个试验由一个随机序列组成,该序列包含一个连续的右手抓取运动想象任务、一个连续的左手抓取运动想象任务和一个休息任务(图2a)。 单个任务包括最初的4秒指令周期和随后的6秒运动想象周期,然后是2秒的休息期(图2b)。在指导期间,参与者被给予一个指示休息任务的十字形线索,或一个指示左手或右手抓取运动想象任务的箭头线索,以告知参与者下一个任务是什么,并指示他们凝视相应的手。在指令周期之后的整个运动想象周期中,与箭头线索相对应的虚拟手模拟一系列抓握动作,并指示参与者观察并想象以运动方式执行相同的动作。最后,在休息期间,虚拟手保持不动,参与者被允许移动或眨眼,以防止眼睛疲劳。在指导期和运动想象期,受试者都被指示避免任何动作,包括眨眼。在整个实验过程中,两只虚拟的手都被展示出来,参与者被期望将它们想象成自己的手。 3、研究方法 ERD分析 对应于电极位置C3和C4的大脑区域分别与右手和左手的抓握动作相关。为了测量单个时段大脑活动的变化,我们首先用下面的方程式计算了三个运动想象任务记录的脑电数据的平均功率谱: 为了分析受试者在每次会话的左右握持运动想象中诱发的ERD幅度随时间的变化,我们使用以下公式计算了两个运动想象任务相对于休息任务的ERD比率: 因此,每一阶段的ERD比率是根据在每个电极位置的不同运动想象任务期间诱发的大脑模式特征的差异来计算的。 为了分析每个实验的运动想象表现,研究者进一步计算了每个实验参与者的平均ERD比率,应用以下公式: 考虑到最活跃的频带对于每个个体可能不同,通过选择带宽为2Hz的频带来确定两个方程中每个参与者的频带,该频带导致来自两个实验的所有任务的最大平均ERD比率。 分别对右手和左手握持运动想象的C3和C4的ERD结果进行分析,探讨被试在两种不同任务中的表现。为了考察使用不同的显示介质对每个参与者的影响,该文对计算的平均ERD值进行了双向方差分析,其中指定的组(表示实验顺序)和显示介质作为两个因素。为了进一步检验参与者在每次会话中ERD的统计增强,该文应用了Dunnett型非参数多重对比检验,其中使用第一次会话的ERD比率作为对照。因此,在两个实验中,分别比较了右手运动想象任务和左手运动想象任务的ERD比率(图3)。 判别分析 通过对两个实验中神经活动的判别分析,构建了经典的机器学习模型以进一步评估性能。为了比较两个实验中每个参与者的分类准确率,提取了每个运动想象周期的6秒脑电数据。为了增加模型要学习的数据量,该文进一步对每个6秒的EEG数据进行了数据增强,将数据以100毫秒的步长划分为2秒长的时间窗口。 应用公共空间模式(CSP)算法从预处理的EEG数据中提取空间特征,并且使用Fisher线性判别分析(LDA)来创建分类模型,该分类模型预测EEG数据段是否涉及休息、左手或右手运动想象任务。为了评估运动想象脑电图数据,我们采用了两种不同的交叉验证方法:1)6折交叉验证,其中分析来自单个实验的数据,并且每个折叠对应于从10个运动想象试验的单个会话中检索到的数据;2)10折交叉验证,其中使用来自单个会话的数据,并且每个折叠对应于从单个试验检索的数据。采用交叉验证法检验区分左手抓握、右手抓握和静止状态三种不同运动想象任务的准确性。为了进行统计分析,该文对6折交叉验证结果进行了双向方差分析检验,以表明每个实验的总体表现。为了进一步检验神经活动辨别力的统计增强,该研究对10折交叉验证结果使用了Dunnett型非参数多重对比检验,其中以第一次会话的准确性作为对照。 4、研究结果 统计分析假设验证 在对左手和右手运动想象的ERD结果进行方差分析以及交叉验证准确性结果的参数检验之前,验证了必要的假设。表1显示了Shapiro-Wilk正态检验和Levene齐性方差检验的结果。P值结果表明,所有病例的方差均未违反正态性和均匀性(p>)。 ERD表现的实验分析 为了比较使用两种不同显示介质的参与者的表现,我们分析了ERD比率和ERD幅度,ERD比率由参与者在运动想象期间的平均ERD比率表示,ERD幅度代表从每次会话收集的ERD随时间的平均值。 两个实验的左手和右手运动想象的ERD比率和ERD幅度进行了比较,如图4所示。图4a的方差分析结果显示,左手运动想象中IVR-MI的ERD比MD-MI大(IVR-MI和MD-MI分别为±和±),差异有非常显著性意义(F(1,16)=,p<)。与MD-MI相比,IVR-MI的右手运动想象的ERD值也较大(分别±和±),差异有非常显著性意义(F(1,16)=,P<)。另一方面,两组受试者左手和右手运动想象差异均无显著性意义(F(1,16)=,p>;F(1,16)=,p>)。 图4b显示了参与者相对于时间的ERD幅度,该幅度是通过平均每个参与者在所有会话中的ERD幅度来计算的。IVR-MI和MD-MI的红色和蓝色波幅图显示,在运动想象期间,左手和右手的ERD均有显著差异,IVR-MI的ERD波幅大于MD-MI。如x轴上的灰标所示,左手运动想象的时域范围为秒和秒之间,右手运动想象的时域范围为秒和秒之间,两种幅度有显著差异。在指导期(左手运动想象 t<,右手运动想象 t<)和静息期结束时(左手运动想象 t>,右手运动想象 t>),两组间差异无统计学意义。 Experiment-Wise交叉验证 图5显示了IVR-MI和MD-MI的6折与对象相关的交叉验证精度结果,其中单个折叠表示从每个会话获取的数据。方差分析结果显示,两种介质的准确性差异非常显著(F(1,16)=,p<),且IVR-MI的准确性高于MD-MI(分别为±和±)。相反,两组组内的差异无统计学意义(F(1,16)=,p>)。 ERD表现的Session-Wise变化 该研究进一步分析了左手和右手运动想象的ERD表现是如何随着训练时间的变化而变化的。如图6所示,左手运动想象期间IVR-MI和MD-MI的ERD率均呈线性正相关(IVR-MI r=,p<;MD-MI r=,p<)。右手运动想象也有相似的结果(IVR-MI r=,p<;MD-MI r=,p>)。在左手和右手运动想象中,IVR-MI的r值和p值比MD-MI在统计学上更强。 第一次会话的ERD比率被选为基线,并与其他会话的ERD比率进行比较,以分析与各次会话相比ERD性能的改善情况,如图6和表2所示。对于左手运动想象,IVR-MI和MD-MI的参与者从第5次开始都有显著的改善,但IVR-MI和MD-MI的改善程度更强(第5次的IVR-MI和MD-MI的P<和P<,第6次的IVR-MI和MD-MI的p=和p=)。对于右手运动图像,参与者只有在使用VR头戴式耳机时才能表现出显著的差异(第4次和第6次分别为p<和p<),而在使用显示器屏幕的重复测试中,没有观察到显著的改善。 交叉验证的Session-Wise变化 图7示出了在每个会话中使用10折交叉验证来区分脑活动模式的结果,其中单个折叠代表来自每个试验的数据。对于IVR-MI和MD-MI,准确度结果均呈正线性关系(分别为r=,p<和r=,p>)。与MD-MI相比,IVR-MI的交叉验证准确性的r值和p值更强。 为了分析不同时段交叉验证准确率的提高,我们对第一个时段的准确性结果进行了Dunnett型非参数多重对比检验。图7和表3中的结果表明,IVR-MI期间的参与者能够从第5次会话开始在辨别力方面表现出显著的改善(第5和第6次会话分别为p<和p<),而在MD-MI期间没有观察到显著差异。 Fisher比值地形图 为了进一步研究从不同的手想象任务中获得的空间特征,我们使用ERD结果在每个电极上应用了Fisher比值。如图8所示,电极位置C3和C4是区分左手和右手运动想象的主要因素。与MD-MI的Fisher比值(C3和C4分别为和)相比,IVR-MI组C3和C4的Fisher比值均较高(C3和C4分别为和)。 5、讨论 该研究采用VR头戴式耳机和显示器作为观察左右手动作的媒介,考察沉浸和错觉对运动想象训练的影响。通过比较两个实验获得的ERD比率和交叉验证精度,该文提供了证据,证明在训练中通过不同的媒介感知相同的动作可能会导致不同的运动想象表现。 研究结果表明,参与者在使用VR头戴式耳机时能够获得更好的运动想象表现。在通过反复训练练习运动想象方面,不仅证实了重复动作观察会影响受试者的运动想象表现,而且发现使用VR头戴式耳机可能会以更少的时间成本提高运动想象表现。通过对使用VR头戴式耳机的ERD比率和交叉验证准确率的结果都显示出较大的改善,该文证实使用VR头戴式耳机比使用显示器显示在改善ERD性能和增加大脑活动的空间区分性方面更有效。 研究者还研究了ERD振幅和Fisher比值,以解决仅仅有不同的显示介质影响中央运动皮质(C3和C4)的ERD比率的担忧。该研究的结果显示ERD振幅模式在指导期略有增加,没有显著差异,然后在两个实验之间有统计上的显著差异,在运动想象期间有较大的增加,然后在静息期出现下降(图4b)。虽然研究者预计在指导期内没有显著差异的轻微增加是被指导动作的准备和计划的结果,但IVR-MI的ERD幅度仅在运动想象和休息早期显著高于MD-MI的显著增加表明,这种统计差异是由运动想象操作引起的。此外,图8显示,在两个实验中,区分不同运动想象任务的主要空间特征来自C3和C4电极,这表明仅仅是显示介质的不同对可能影响我们结果的因素影响很小,例如来自视觉皮层的空间特征。这些结果表明,通过VR头戴式耳机的动作观察比通过显示器显示的运动想象操作更有效。 如前所述,该文重点研究了通过VR系统进行的沉浸和错觉对动作观察的重复运动想象训练是否有效。该文的假设通过ERD表现和交叉验证结果得到了验证,结果显示,在重复的运动想象训练中,ERD比率更高,空间脑活动更具区分性。结果表明,丰富的沉浸本身影响运动想象(通过呈现相同的图形手部运动)。因此,对于可以模拟的任何图形场景,与非沉浸式显示器相比,使用沉浸式VR头戴式耳机可能证明对运动想象训练是有益的。 该研究存在一些局限和可能的改进之处。可能会有人担心,该研究的图形场景可能在某种程度上被认为是不同的,因为两种显示介质的虚拟手的比例可能不完全相同。为了解决这个问题,在开始每个实验之前,在调整大小以最大限度地体现时,将重点放在每个参与者的反馈上。此外,虽然研究者在研究中调整了各种环境成分以扩大具体化,但在两个实验中并没有直接量化每个用户的具体化水平。由于两个实验之间存在着相当大的时间差距,研究者认为任何可能的调查或问卷都是潜在的不可靠的,而是使用以前的工作结果来声称VR增强了具体化。最后,相对较小的样本量也是一个限制。虽然每个参与者都进行了多次重复试验,但考虑到每个人表现的不同,分析的统计能力可能是有限的。因此,该文的研究结果应该仔细解释。根据该文的研究结果,未来的研究将集中于使用该文的指标来比较VR头戴式耳机(一种完全沉浸式可视化工具)和立体3D眼镜(一种半沉浸式虚拟现实系统)的使用情况。 6、结论 不同于以往研究侧重于动作观察和运动想象的视觉场景本身的比较,该研究关注沉浸式VR和具体化对运动想象的联合效应。与其他现有介质相比,VR耳机能够提供更逼真的体验,增强了错觉和沉浸感,受此启发,研究者通过比较VR耳机和显示器对相同虚拟手部动作的动作观察,研究了沉浸式VR耳机是否也可以用来增强运动想象表现。 该文研究了与这两种介质的运动想象表现相关的大脑模式的两个不同方面:来自运动想象相关脑区的信号振荡节律的变化,以及信号空间特征的可区分性,这是使用通常用于脑机接口的机器学习模型来探索的。这两项分析的结果表明,使用VR耳机可能会导致神经信号发生更大的振荡变化和空间分辨。因此,在临床治疗、康复和脑机接口等领域,使用沉浸和错觉相结合的VR头戴式耳机可以更好地呈现运动想象训练中的动作观察。在临床治疗、康复和脑机接口领域,使用VR头戴式耳机可以更好地呈现运动想象训练中的动作观察。

221 评论

相关问答

  • 什么叫沉浸式体验论文模板

    VR技术在高职教学中的应用论文 vr技术其实就是VR,中文的意思就是虚拟现实,虚拟现实技术是一种能够创建和体验虚拟世界的计算机仿真技术,它利用计算机生成一种交互

    雾霭流年 2人参与回答 2023-12-10
  • 写论文格式的软件叫什么

    word好用。1、减少设置格式的时间,将主要精力集中于撰写文档。Microsoft Office Fluent 用户界面可在需要时提供相应的工具,使您可轻松快速

    欧阳安Muse 4人参与回答 2023-12-10
  • 国内外沉浸式旅游研究论文

    近些年来,各种沉浸式体验出现在演出、展览、旅游景区、产业园、酒店等空间,人们可以在不同形态的空间室内室外感受虚拟与现实的转换。目前,沉浸式体验已经成为文旅消费的

    旅游新四力 3人参与回答 2023-12-09
  • 混凝土模板下沉论文

    已发查收 NO.1没收到的话先检查邮箱地址和垃圾箱 NO.2没收到的话别急着采纳,追问我,但请收到后再采纳

    撒野撒野王子 3人参与回答 2023-12-11
  • 沉浸式阅读教学实践研究论文

    新的课程标准为课堂改革指出了方向:让学生做语文学习的主人。在教学过程中,要加强学生自主的语文实践活动,引导学生在实践中主动地获取知识,避免烦琐的分析和琐碎机械的

    南宫爱默 3人参与回答 2023-12-06