• 回答数

    5

  • 浏览数

    338

健康是福83
首页 > 学术论文 > 纳米材料学位论文

5个回答 默认排序
  • 默认排序
  • 按时间排序

小小小黄鱼

已采纳

[1] Yu,. S.,Arepalli,S.,Ruoff,R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties .Phys. Rev. Lett. 2000, 84 :5552~5555 . [2] J. Hone,B. Batlogg,Z. Benes,A. T. Johnson,J. E. Fischer. Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes .Science, 2000, 289 (5485) :1730 - 1733 . [3] Li Wenzhen, Liang Changhai, Qiu Jieshan. Carbon Nanotubes as Support for Cathode Catalyst of a Direct Methanol Fuel Cell .Carbon, 2002, 40(7) :787 . [4] N. M. Rodriguez M. S. Kim F. Fortin I. Mochida and R. T. K. Baker. Carbon deposition on iron-nickel alloy particles .Applied Catalysis A: General, 1997, 148 (2) :265-282 . [5] R. Gao, C. D. Tan and R. T. K. Baker. Ethylene hydroformylation on graphite nanofiber supported rhodium catalysts .Catalysis Today, 2001, 65 (1) :19-29 . [6] Cuong Pham-Huua,Nicolas Keller a,Gabrielle Ehret c,et al. Carbon nanofiber supported palladium catalyst for liquid-phase re-actions:An active and selective catalyst for hydrogenation of cin-namaldehyde into hydrocinnamaldehyde[J] .Journal of MolecularCatalysis A:Chemical. 2001, 170 :155-163 . [7] P. A. Simonov, A. V. Romanenko, I. R. Prosvirin et al. On the nature of the interaction of H_2PdCl_4 with the surface of graphite-like carbon materials .Carbon, 1997, 35 :73-82 . [8] Rodriguez N M. Review of Catalyst of a catalytically growncarbon nanofibers[J] .Mater Res, 1993, 8 (12) :29-33 . [9] Chamber A,Nemes T,Rodriguez N M,et al. Catalytic be-havior of Graphite nanofiber supported nickel with other support media[J] .Phys ChemB, 1998, 102 (12) :2251-2258 . [10] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel influence of the nanofiberstructure[J] .Phys Chem B, 1998, 102 (26) :5168-5177 . [11] Park C,Baker R T K. Catalytic behavior of graphite nanofibersupported nickel effect of chemical blocking onthe performance of the system[J] .Phys Chem B, 1999, 103 (13) :2454-2460 . [12] Mestl G,Maksimova N I,Schlogl R. Catalytic activity ofcarbon nanotubes and other carbon materials for oxidative de-hydrogenation of ethylbenzene to styrene[J] .Stud Sur SciCatal, 2001, 40 :2066-2072 . [13] Keller N,Maksimova N I,Roddatis V V,et al. The cata-lytic use of onion-like carbon materials for styrene synthesisby oxidative dehydrogenation of ethylbenzene[J] .AngewChem Int Ed, 2002, 41 (11) :1885-1888 . [1] 李权龙,袁东星,林庆梅. 多壁碳纳米管的纯化[J]. 化学学报, 2003,(06) . 中国期刊全文数据库 共找到 2 条[1] 项丽. 应用纳米碳管固相萃取环境中有机污染物研究进展[J]. 安徽农学通报, 2008,(21) . [2] 张晓明,王洪艳,李俊锋. 改性MWNTs/纳米HA/PLA骨修复材料的制备[J]. 吉林大学学报(工学版), 2008,(04) . 中国优秀硕士学位论文全文数据库 共找到 1 条[1] 韩素芳. 普鲁士蓝类化合物/碳纳米管修饰电极的制备及其性能研究[D]. 北京化工大学, 2007 . 中国期刊全文数据库 共找到 8 条[1] 张娟玲,崔屾. 碳纳米管/聚合物复合材料[J]. 化学进展, 2006,(10) . [2] 温轶,施利毅,方建慧,曹为民. 压缩集结碳纳米管电极对活性艳红染料的电催化降解研究[J]. 化学学报, 2006,(05) . [3] 张新荣,姚成漳,王路存,曹勇,戴维林,范康年,吴东,孙予罕. 甲醇水蒸气重整制氢的高效碳纳米管改性Cu/ZnO/Al_2O_3催化剂[J]. 化学学报, 2004,(21) . [4] 唐文华,邹洪涛,张艾飞,刘吉平. 碳纳米管纯化技术评价与研究进展[J]. 炭素, 2005,(03) . [5] 陈灿辉,李红,朱伟,张全新. 二茂铁及其与DNA复合物的电化学行为[J]. 物理化学学报, 2005,(10) . [6] 方建慧,温轶,施利毅,曹为民. 碳纳米管电极电催化氧化降解染料溶液的研究[J]. 无机材料学报, 2006,(06) . [7] 赵弘韬,张丽芳,张玉宝. 碳纳米管纯化工艺的研究[J]. 科技创新导报, 2008,(26) . [8] 李权龙,袁东星. 多壁碳纳米管用于富集水样中有机磷农药残留的研究[J]. 厦门大学学报(自然科学版), 2004,(04) . 中国博士学位论文全文数据库 共找到 4 条[1] 王哲. 多壁碳纳米管的形态控制及场发射性能研究[D]. 哈尔滨工业大学, 2007 . [2] 邓春锋. 碳纳米管增强铝基复合材料的制备及组织性能研究[D]. 哈尔滨工业大学, 2007 . [3] 胡长员. 碳纳米管功能化及其负载非晶态NiB合金催化剂的加氢性能研究[D]. 南昌大学, 2006 . [4] 米万良. 多孔陶瓷负载碳纳米管膜的制备及其气体渗透性能[D]. 天津大学, 2005 . 中国优秀硕士学位论文全文数据库 共找到 8 条[1] 张仲荣. 气相色谱应用于尾气排放的分析技术研究[D]. 天津大学, 2006 . [2] 张娟玲. 多壁碳纳米管/聚乙烯醇复合材料膜的制备及其性能研究[D]. 天津大学, 2006 . [3] 王翔. 催化裂解无水乙醇制备纳米碳管研究[D]. 西北工业大学, 2007 . [4] 张麟. 碳纳米管改性双马来酰亚胺复合材料的研究[D]. 西北工业大学, 2007 . [5] 李柳斌. 聚氯乙烯的熔融共混改性研究[D]. 武汉理工大学, 2008 . [6] 高远. 碳纳米管/丁苯橡胶/天然橡胶复合材料结构与性能的研究[D]. 南京理工大学, 2007 . [7] 华丽. 大孔径CNTs功能化处理及NiB/CNTs合金催化性能研究[D]. 南昌大学, 2006 . [8] 仪海霞. 碳纳米管球的制备及其应用研究[D]. 北京化工大学, 2007 . 中国重要会议论文全文数据库 共找到 2 条[1] 李权龙,袁东星. 碳纳米管作为吸附剂在环境分析中的应用[A]. 第二届全国环境化学学术报告会论文集[C], 2004 . [2] 徐雪梅,黄碧纯. 碳纳米管负载V_2O_5脱氮催化剂的研究[A]. 第五届全国环境催化与环境材料学术会议论文集[C], 2007 .

144 评论

劲草黑锅

Si是不用于水的,所以Si是疏水性的。亲水性(hydrophilic),对水具有亲合力的性能.如·:金属版材如铬、铝、锌及其生成的氢氧化物以及具有毛细现象的物质都有良好的亲水效果.在有机物中表现为羟基和羧基等的亲水性,即它们使该有机物易溶于水.疏水性(hydrophobic),对水具有排斥能力的性能.如:印版图文的亲油成分和印刷油墨都具有良好的疏水性.在有机物中表现为烷基和苯环等的疏水性,即它们使该有机物难溶于水.Si有无定形硅和晶体硅两种同素异形体。晶体硅为灰黑色,无定形硅为黑色,密度克/立方厘米,熔点1410℃,沸点2355℃,晶体硅属于原子晶体。不溶于水、硝酸和盐酸,溶于氢氟酸和碱液。硬而有金属光泽。

230 评论

敏宝环保科技

登录注册学位论文 > 学位论文详情聚苯胺纳米纤维膜的电化学制备及其亲水性研究阅读量:98 收藏 引用分享基本信息摘要:纳米材料由于具有表面效应、小尺寸效应等特殊的性质,使其在生物医学、电子、光学和信息技术等方面有着广泛的应用前景。近年来,导电聚合物纳米材料因其在纳米电子器件和分子导线等方面的潜在应用逐渐成为各国科学家研究的热点。作为一种常见的导电聚合物,聚苯胺由于具有高的导电性能、独特的分子结构、优异的环境稳定性和可加工性等优点,受到了越来越多的关注。但要大量获得尺寸可控、生长方向良好的微/纳米结构聚苯胺仍是一项极具挑战性的课题。因此,研究聚苯胺纳米材料的电化学制备及其修饰膜的润湿性具有重要理论和实际意义。 采用恒电流法,在水溶液体系中,在不锈钢电极表面上快速、低成本合成了聚苯胺纳米纤维。考查了不同聚合条件如聚合电流密度、单体浓度、聚合温度、聚合时间等因素对聚苯胺纳米纤维形貌的影响。确定使用恒电流法制备聚苯胺纳米纤维的电流密度范围为1-15mA/cm2。制得的聚苯胺纳米纤维的直径在80-190nm之间,长度在1-3μm之间。 聚苯胺作为一种亲水的材料,通过改变其表面的微观粗糙度可以得到超亲水的表面。本文在采用电化学法在不锈钢电极表面制得聚苯胺纳米纤维薄膜的基础上,初步探索了制备条件如聚合单体浓度、聚合时间和烘干时间等对聚苯胺纳米纤维薄膜表面的亲水性的影响。分析了粗糙度对聚苯胺薄膜表面亲水特性的影响,为聚苯胺在表面润湿方面的应用提供理论依据,拓宽了聚苯胺的应用研究范围。展开 关键词:聚苯胺 ; 纳米纤维 ; 恒电流法 ; 亲水性 ; 润湿作者:赵晓玲DOI:学位授予单位:《天津大学》单位:天津大学正文语种:中文全部来源相似文献参考文献知网掌桥科研万方数据声明:本站提供的数据(包含且不限于数据中的文字、图片、视频)仅用于学术研究,严禁用于任何以商业为目标的传播。

264 评论

南宫爱默

疏水。具体咋样,偶也不熟悉,希望自己找的文档对你会有帮助。非晶碳薄膜润湿性能的可控性研究 :以甲基三乙氧基硅烷(MTES)替代部分正硅酸乙酯(TEoS)作为前驱物,用溶胶一凝胶法制备了MTES改性二氧化硅溶胶和二氧化硅膜,研究了憎水基团的添加量对溶胶体系的稳定性和对二氧化硅膜润湿性以及水汽稳定性的影响.结果表明,随MTES/TEOS摩尔比增大,二氧化硅溶胶的稳定性降低,改性二氧化硅膜的表面自由能显著减小;表面润湿性降低,主要是表面张力中极性力的贡献,FTIR分析表明,这是由于二氧化硅颗粒表面一CH3非极性基团增加所致;在潮湿环境中陈化时,二氧化硅膜接触角的变化及吸水率随MTES/TEOS摩尔比增大而减小,疏水性二氧化硅膜的MTES/TEoS宜为0.8一1.0;AFM形貌分析表明陶瓷支撑体上的二氧化硅薄膜连续,膜表面较光滑、平整.关键词:二氧化硅膜;改性;润湿性;润湿性能是固体表面的重要特征之一,它是由表面的化学组成和微观几何结构共同决定的。无论是在工农业生产还是人们的日常生活中,润湿都是一种非常重要的现象,具有特殊润湿性和可控润湿性材料一直是人们关注的热点,比如超疏水材料(接触角大于150°)在窗户和天线的防雪防霜,汽车挡风玻璃的自清洁,以及生物细胞的活动等领域已经或者即将发挥极大的作用。作为一种经济适用并且环境友好的光电器件材料,非晶碳薄膜因其众多优良的特性而引起广泛研究兴趣。因此,辅之以特殊的润湿性能,非晶碳薄膜必将发挥更大的优势。 本文采用磁控溅射系统在普通玻璃和单晶硅上获得了具有不同表面形貌特征的非晶碳薄膜,此外利用等离子体表面处理系统,通过改进工艺方法,优化工艺条件,对非晶碳薄膜表面化学组成进行调控,获得了润湿性能从超亲水到超疏水范围变化的表面。系统地研究了工艺参数对非晶碳薄膜的表面结构以及润湿性能的影响,此外还对非晶碳薄膜润湿性能的环境稳定性进行了评估。 本论文的主要的研究工作进展如下:1.通过调控溅射工艺成功制备具有显著差异的表面形貌的非晶碳薄膜,其表面特征为从光滑平坦过渡到具有丰富的孔隙和极其复杂的皱褶的分形结构。而有趣的是,这种分形结构非常类似于自然界中荷叶的表面微观结构,这是目前在碳薄膜中首次发现具有这样特征的结构。对具有不同表面特征薄膜的润湿性能测试表明:仅仅通过工艺的调控,形貌的改变就可以使非晶碳薄膜的表面从非常亲水(接触角为40°)到超疏水(接触角为152°)大范围的浮动。 2.通过计盒分维法将不同形貌的薄膜定量描述。随着分形维数的增大,薄膜的表面具有更加复杂的结构,表面有更多和更精细的具有纳米尺度的凹凸、皱褶和缺陷结构,具有更大的吸附和容纳气体的能力,从而提高水滴薄膜表面的接触角。其中当沉积温度为400°C的时候,具有类荷叶的表面微细结构的分维达到了,而气体所占的分数为。 3.通过对具有特殊形貌的非晶碳薄膜进行CF4等离子体表面处理来调控其表面的润湿性能,优化处理工艺极大提高非晶碳薄膜表面的疏水性能,原来为弱疏水的表面(接触角为105°)变为超疏水表面,其接触角达到了162°。而氟化后的类荷叶状的表面与纯水的接触角达到168°,其接触角的变化范围为165°~171°。且在全pH(0~14)值范围内均展示了优异的超疏水性能,此外氟化处理后的非晶碳薄膜的超疏水性能表现了良好的热稳定性和耐久性;通过对非晶碳薄膜Ar、N2、H2等离子处理能够提高非晶碳薄膜的亲水性能,其中通过H2、Ar等离子体处理具有类荷叶表面的非晶碳薄膜时,其表面达到了超亲水性能,其接触角小于10°。 作 者: 周英 学科专业: 材料物理与化学 授予学位: 硕士 学位授予单位: 北京工业大学 导师姓名: 严辉 王波 学位年度: 2006 研究方向: 语 种: chi 分类号: TB43 O484 关键词: 润湿性能 非晶碳薄膜 超疏水 形貌 等离子体 机标分类号: TB43 O484 机标关键词: 非晶碳薄膜 润湿性能 等离子体表面处理 接触角 分形结构 超疏水性能 优化工艺条件 薄膜表面 表面特征 亲水性能 化学组成 荷叶 调控 表面形貌特征 磁控溅射系统 微观几何结构 汽车挡风玻璃 等离子体处理 超亲水 材料 基金项目: 参考文献(87条)1. 参考文献 2. R Blossey Self-Cleaning Surfaces-Virtual Realities 2003() 3. C L Low Friction Flows of Liquid at Nanopatterned Interfaces 2003() 4. 张立德.牟季美 纳米材料和纳米结构 2001() 5. 金美花 超疏水性纳米界面材料的制备及研究 [学位论文] 博士 2004() 6. V Y Controlling Droplet Deposition with Polymer Additives 2000() 7. 郑黎俊.乌学东.楼增.吴旦 表面微细结构制备超疏水表面 [期刊论文] - 北京工业大学 2004(17) 8. L Mahadevan Non-Stick Water 2001() 9. D Bico Slippy and Sticky Microtextured Solids 2003() 10. X Polyelectrolyte Multilayer as Matrix For Electrochemical Deposition of Gold Clusters:Toward Super-Hydrophobic Surface 2004() 像这样的专业性文章,在学校内网的图书馆都会各大数据库提供阅读和部分下载。

240 评论

Krystaldxe

在功能分子设计合成、杂化材料、纳米材料制备及应用等方面,承担有多项国家及省部级科技项目,发表学术论文350多篇,SCI、EI收录论文180篇,获发明专利3项,曾荣获湖北省“青年科技奖”,湖北省自然科学二等奖,湖北省优秀博士学位论文,出版编著《纳米材料制备技术》一部,2004年台湾五南图书出版股份有限公司出版了该编著的繁体版《奈米材料原理与制备》,在学术界具有一定的影响。在碳纳米管研究方面,在阵列碳纳米管的可控性制备、性能及应用领域做了许多系统的研究,这些成果先后在., ., .等权威的化学和材料期刊上表论文近50余篇,其中SCI收录论文31篇,影响因子IF大于的论文17篇,被引用650次,SCI他引529次,单篇他人引用达109次。申请和获得授权的专利8项。有关三维碳纳米管阵列的研究在.上发表以后,.副主编立即约稿详细介绍这一工作。受美国科学出版社邀请在《纳米科学和纳米技术百科全书》Encyclopedia of Nanoscience and Nanotechnology中撰写有关阵列碳纳米管的长篇综述,共15页,近2万字。获上海合成金属国际会议(ICSM2002) 青年科学家奖The Synthetic Metals Young Scientists Award和中国科学院院长特别奖。主要研究方向: (1)进行高b值、良好透光范围的,具有热稳定性的,能与聚合物骨架、无机三维网络键连、透明性能好的二阶非线性光学功能杂环化合物的设计、合成和功能研究; (2)设计制备新型二阶非线性光学功能和热释电功能有机-无机杂化材料; (3)碳纳米材料的制备及应用研究。采用低廉原料控制合成高纯、高产的特种碳纳米材料,微波辅助碳纳米管的绿色高效的功能化修饰,基于特种碳纳米管的纳米复合材料在光电领域的应用研究; (4)纳米TiO2光催化氧化技术在污水处理中的应用研究; (5)染料敏化纳米晶太阳能电池制备与应用。 无铅铁电压电材料方向长期研究大各向异性压电陶瓷材料、无铅压电陶瓷材料、低温烧结压电陶瓷材料、大功率压电陶瓷材料及大功率压电变压器、压电陶瓷变压器及其系列高压电源、压电陶瓷耦合固体继电器研究、多层压电陶瓷器件、压电陶瓷超声换能器等具有实用性的电子产品。主持和参与完成了国家“863”计划项目、国家自然科学基金项目、教育部和湖北省等省部级重点科研项目30余项,在国内外重要学术期刊上发表论文300余篇,110余篇被SCI、EI收录,获国家专利3项,美国专利1项。已研制出的压电陶瓷变压器高压电源,于1987年获湖北省科技进步二等奖。研制的PMMN四元系大功率压电陶瓷变压器达国际先进水平,获湖北省科技进步一等奖,国家科技进步二等奖。研制开发的BA—ZD—1型压电陶瓷电击器,创产值1900多万元,获湖北省科技进步三等奖。将陶瓷变压器应用于雷达显示系统,研制出军用压电陶瓷变压器雷达电源,已通过省级鉴定,技术指标达到世界先进水平,十多年来一直应用在我国驻港、驻澳部队的舰载雷达、岸防雷达系统。研制出的压电陶瓷耦合固体继电器,技术指标已达到世界先进水平。对BNT系及铌酸盐系等无铅压电陶瓷进行了研究,取得了实质性的进展,已经制备出高介电、高压电、高铁电性能无铅压电陶瓷,相关论文已经发表在Applied Physics Letters等国际高水平杂志上,并申请了多项国家发明专利。 主要研究方向: (1)无铅压电陶瓷及应用,特别是研究无铅陶瓷材料组成、结构及工艺对材料性能的影响,以及新型无铅压电陶瓷材料及器件的设计,研究性能特异无铅压电陶瓷材料、复合无铅压电材料、低温烧结无铅压电陶瓷材料的制备及其应用;? (2)无铅铁电薄膜及其应用,特别是无铅铁电薄膜的制备、生长行为、薄膜与衬底之间的界面效应,薄膜中电畴结构,压电、铁电相界运动,薄膜的性能、机理以及铁电薄膜器件的研究; (3)无铅铁电压电微小型器件开发应用,特别是微机械理论、微机械材料与微结构、微细加工技术、微传感器与集成铁电器件等方面的研究工作。

240 评论

相关问答

  • 纳米材料论文范文格式

    浅谈纳米技术及其在机械工业中的应用摘要:主要介绍了纳米技术的内涵、主要内容及纳米技术在微机械和包装、食品机械工业中的应用,并研究预测了纳米技术在未来机械工业中的

    闪闪的钻石糖 3人参与回答 2023-12-06
  • 新型纳米材料论文

    纳米科技发展态势和特点_(转) 科学界普遍认为,纳米技术是21世纪经济增长的一台主要的发动机,其作用可使微电子学在20世纪后半叶对世界的影响相形见绌,纳米技术将

    大财891088 3人参与回答 2023-12-08
  • 纳米材料论文结语

    纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1-100nm)或由它们作为基本单元构成的材料,这大约相当于10~100个原子紧密排列在一起的尺度。下面是我

    依我以希 3人参与回答 2023-12-09
  • 纳米材料导论论文

    纳米吸波复合材料的研究与发展趋势吸波复合材料主要是应用在飞机,坦克等表面来降低其被探测和摧毁的概率,提高目标的生存能力。吸波复合材料是一类功能复合材料,它能吸收

    蛋糕上的草莓1 5人参与回答 2023-12-11
  • 纳米材料期刊

    纳米技术的核心期刊《纳米技术与精密工程》期刊级别: CSCD核心期刊。设置栏目:纳米技术、微机电系统、精密加工、精密测量。

    耗耗和妞妞 4人参与回答 2023-12-11