猪猪侠xtt
“圜,一中同长也!”在古时人们对于圆的认识主要是圆心到圆上距离相等,从而做成了车轮等物品,而今圆已成为我们生活中必不可少的模具,人们广泛运用的东西大多由圆构成。毕达哥拉斯说过,一切立体图形中最美的是球形,一切平面图形中最美的是圆形。由此可见
吃出新味来
《冰雹猜想有规可循》冰雹猜想又名考拉兹猜想、角谷猜想、3x+1猜想等等。其描述为:任一正整数x如果是奇数就乘3加1,如果是偶数就除以2,,反复计算,最终都将会得到数字1。如:11,34,17,52,26,13,40,20,10,5,16,8,4,2,1.该问题一出现就风靡全球,无论是小学、中学还是高校师生都为之着迷。近百年来,数学家、物理学家、计算机科学家等都对此进行过研究;涉及的数学领域也很广,有数论、遍历理论、动态分析、数理逻辑与计算理论、随机过程与概率论和计算机科学等等。虽然取得了一定的成果,但始终没能被彻底解决。这个问题似乎是无解的,几乎无人能破解其中的秘密。世界著名华裔数学家陶哲轩在2019年曾发文证明约99%的初始值大于1千万亿的考拉兹数列,最终值小于200,但依旧没有改变现状。你或许会好奇的说找个反例不就行了,是的,全球计算机在没日没夜的找,可惜都没找到反例。对于这个极其简单又无聊又超有趣的问题,别说常人,数学家几乎都不敢专职研究并直呼:“不要试图去解决这些难题!”;“没有希望,绝对没有希望。”;“当今数学还没有解决此类难题的方法。”等等。那么冰雹猜想就真的如此没有规律吗?那倒也不是,因为无论它怎么变化,也不会背离白言规则(LiKe's rule):对于任一正整数,如果它是奇数则乘3加1;如果它是偶数则除以2,如此循环,最终都将转变到LiKe第二数列(2, 8, 26, 80, …, 3^n-1)中的数,3^n-1再变为更小的3^n-1并最终变为8回到1。如11必变到26(3^3-1),再变为更小的8(3^2-1),并回到1;另外27是个极其强悍的数字,按照规则77步才能到达巅峰值9232(27的342倍多),具有同样步数的2的幂为2的111次方,很惊人吧!其变化更是起伏不定,但按照白言规则却显而易见:27必会转变到3^n-1(242),定会降至3^2-1(8)并回到1。真是太神奇了。这个问题很有趣吧,还超简单,感兴趣的可以自己试试哦。
石头脾气
寒假中的一天,我和妈妈一起出去逛街。我们边走边商量,先去服装店买衣服,再去超市购物,最后回家。 街上产品琳琅满目,到处都热热闹闹,喜气洋洋。忽听一个高音喇叭广告,吸引了妈妈:清仓大处理!清仓大处理!买一送一!心动不如行动,大家快来买呀!……妈妈一听心动了,于是走进商场行动起来。这时我看见了在广告排的最后一行有几个较小的字,是这么一句话:“(注:送的衣服价格不超过买的衣服价格)”。虽然我感到很奇怪,但我还是跟着妈妈进去了,妈妈先挑中了一件黑色羽绒服给自己,需要204元,又挑了一件棉大衣给爸爸,需要169元,妈妈想也没想就付了钱,觉得挺合算,用204元就可以买到369元的东西。可我总觉得很奇怪,俗话说:“只有买亏,没有卖亏。”我边走边想:没有优惠时的总价是204+165=369元;平均每件只有369 ÷2=元;把这个价格与羽绒服的价格对比一下:204元>元 元看来妈妈亏了元这个结果还没加上成本与售价间的差距耶!看来商家永远是赚了!
为爱浪漫1
思路:根据题目数学科普小论文展开,并结合实际情况加以说明。
今天,我在做题时被一道应用题给难住了。这道题的题目是:小华今年3岁,今年爸爸26岁,几年后爸爸的年龄是小华的3倍,我百思不得其解。
后来妈妈回来了,我就请教妈妈。妈妈帮我分析:根据这个题目的条件可知,今年爸爸和小华的“年龄差”是26-4=24(岁)。再根据“爸爸的年龄是小华的3倍”这一关系,画张图试试。我们俩就开始画了起来。
画了图之后,我马上明白过来了:他们俩过了几年后,“年龄差”还是24岁。再根据差倍问题的解法求出几年后小华的年龄,用几年后小华的年龄减去2岁,就可以求出中间经过了几年了。
解是:26-2=24(岁)
24÷(3—1)=12(岁)
12-2=10(年)
答:10年后爸爸的年龄是小华的3倍。
妈妈又让我验算一下,10年后爸爸的年龄是不是小华的3倍。
(26+10)÷(2+10)=36÷12=3
耶!我答对了。看来做题先得画图,画了图就能就一目了然了。
素食更好
数学小论文一 关于“0” 0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。” “任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。 “105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示…… 爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。 数学小论文二 各门科学的数学化 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具. 同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的. 现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程. 例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了. 又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学. 再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就. 谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等. 还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学. 谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量. 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.” 正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域. 数学小论文三 数学是什么 什么是数学?有人说:“数学,不就是数的学问吗?” 这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。 历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。” 那么,究竟什么是数学呢? 伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。 数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。 纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。 应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。 高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。 体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。 广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。 各门科学的“数学化”,是现代科学发展的一大趋势。 我也不知道你是几年级的,就给你弄了好多,你自己看看,删减删减,不过小学写论文?!我们初中还没写呢……o()^))o 唉,现在的教育水平开始抓学生了。。。
家的塑造者
圆到处都是。大的,小的,比比皆是。我们说“没有规矩,不能成方圆”。可见,方和圆是生活中很常见的图形。圆在哪里呢?早上又到了上学的时间,闹钟响了。闹钟的小表盘是圆形的,三根表针都固定在圆心上。爸爸戴的手表的表盘也是圆的。起床后,妈妈叫我洗漱吃早餐。我的杯子是圆的,杯口是圆圆的。洗手液的瓶子也是圆的。还有洗手池,都是圆的。我坐在圆圆的餐桌旁边,吃妈妈给我煎好的荷包蛋。荷包蛋是圆的,装荷包蛋的盘子竟然也是圆的。我去上学。路上的汽车轮子都是圆的,就连小汽车的司机抓着的方向盘也是圆的。叔叔阿姨们骑的自行车,摩托车车轮也是圆的。学校里,体育课上,老师带我们踢足球,足球是圆的。在操场边的器材室里,还有圆圆的篮球和排球。不光如此,还有呼啦圈呢!我抬起头看天上,太阳是圆的。我想,当我晚上吃完饭出来玩的时候,就能看到圆圆的月亮了。
有一天,我跟妈妈去逛商场.妈妈进了超市买东西,让我站在付钱的地方等她.我没什么事,就看着营业员阿姨收钱.看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元
【容易忽略的答案】大千世界,无奇不有,在我们数学王国里也有许多有趣的事情。比如,在我现在的第九册的练习册中,有一题思考题是这样说的:“一辆客车从东城开向西城,每
五年级第二学期以来,我们学的主要内容就是长方体、正方体的表面积、体积和分数乘法的等。在长方体、正方体表面积的单元里,有许多典型的题目,而这些题目通常会导致我们思
小学 六年级数学 的教学在小学教学中占着很重要的地位,作为数学 教育 工作者,我们有义务激发学生对于数学学习的热情和兴趣,开发学生的思维,增强学生的自信
无论是在学习还是在工作中,大家肯定对论文都不陌生吧,通过论文写作可以培养我们独立思考和创新的能力。你写论文时总是无从下笔?以下是我为大家整理的小学议论文作文30