• 回答数

    7

  • 浏览数

    109

开心宝贝萱萱
首页 > 学术论文 > 数学家介绍1000字论文

7个回答 默认排序
  • 默认排序
  • 按时间排序

jingeyijie

已采纳

日还是∴(=^▽^=)

250 评论

Megumi2046

人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。 数的概念最初不论在哪个地区都是1、2、3、4……这样的自然数开始的,但是记数的符号却大小相同。 古罗马的数字相当进步,现在许多老式挂钟上还常常使用。 实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数: 1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。 2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。 3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:""表示 "15,000",""表示"165,000"。 我国古代也很重视记数符号,最古老的甲骨文和钟鼎中都有记数的符号,不过难写难认,后人没有沿用。到春秋战国时期,生产迅速发展,适应这一需要,我们的祖先创造了一种十分重要的计算方法--筹算。筹算用的算筹是竹制的小棍,也有骨制的。按规定的横竖长短顺序摆好,就可用来记数和进行运算。随着筹算的普及,算筹的摆法也就成为记数的符号了。算筹摆法有横纵两式,都能表示同样的数字。 从算筹数码中没有"10"这个数可以清楚地看出,筹算从一开始就严格遵循十位进制。9位以上的数就要进一位。同一个数字放在百位上就是几百,放在万位上就是几万。这样的计算法在当时是很先进的。因为在世界的其他地方真正使用十进位制时已到了公元6世纪末。但筹算数码中开始没有"零",遇到"零"就空位。比如"6708",就可以表示为"┴ ╥ "。数字中没有"零",是很容易发生错误的。所以后来有人把铜钱摆在空位上,以免弄错,这或许与"零"的出现有关。不过多数人认为,"0"这一数学符号的发明应归功于公元6世纪的印度人。他们最早用黑点(·)表示零,后来逐渐变成了"0"。 说起"0"的出现,应该指出,我国古代文字中,"零"字出现很早。不过那时它不表示"空无所有",而只表示"零碎"、"不多"的意思。如"零头"、"零星"、"零丁"。"一百零五"的意思是:在一百之外,还有一个零头五。随着阿拉数字的引进。"105"恰恰读作"一百零五","零"字与"0"恰好对应,"零"也就具有了"0"的含义。 如果你细心观察的话,会发现罗马数字中没有"0"。其实在公元5世纪时,"0"已经传入罗马。但罗马教皇凶残而且守旧。他不允许任何使用"0"。有一位罗马学者在笔记中记载了关于使用"0"的一些好处和说明,就被教皇召去,施行了拶(zǎn)刑,使他再也不能握笔写字。 但"0"的出现,谁也阻挡不住。现在,"0"已经成为含义最丰富的数字符号。"0"可以表示没有,也可以表示有。如:气温0℃,并不是说没有气温;"0"是正负数之间唯一的中性数;任何数(0除外)的0次幂等于1;0!=1(零的阶乘等于1)。 除了十进制以外,在数学萌芽的早期,还出现过五进制、二进制、三进制、七进制、八进制、十进制、十六进制、二十进制、六十进制等多种数字进制法。在长期实际生活的应用中,十进制最终占了上风。 现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。 数的概念、数码的写法和十进制的形成都是人类长期实践活动的结果。 随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。 随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。 但是,在数字的发展过程中,一件不愉快的事发生了。让我们回到大经贸部2500年前的希腊,那里有一个毕达哥拉斯学派,是一个研究数学、科学和哲学的团体。他们认为"数"是万物的本源,支配整个自然界和人类社会。因此世间一切事物都可归结为数或数的比例,这是世界所以美好和谐的源泉。他们所说的数是指整数。分数的出现,使"数"不那样完整了。但分数都可以写成两个整数之比,所以他们的信仰没有动摇。但是学派中一个叫希帕索斯的学生在研究1与2的比例中项时,发现没有一个能用整数比例写成的数可以表示它。如果设这个数为X,既然,推导的结果即x2=2。他画了一个边长为1的正方形,设对角线为x ,根据勾股定理x2=12+12=2,可见边长为1的正方形的对角线的长度即是所要找的那个数,这个数肯定是存在的。可它是多少?又该怎样表示它呢?希帕索斯等人百思不得其解,最后认定这是一个从未见过的新数。这个新数的出现使毕达哥拉斯学派感到震惊,动摇了他们哲学思想的核心。为了保持支撑世界的数学大厦不要坍塌,他们规定对新数的发现要严守秘密。而希帕索斯还是忍不住将这个秘密泄露了出去。据说他后来被扔进大海喂了鲨鱼。然而真理是藏不住的。人们后来又发现了很多不能用两整数之比写出来的数,如圆周率 就是最重要的一个。人们把它们写成 π、等形式,称它们为无理数。 有理数和无理数一起统称为实数。在实数范围内对各种数的研究使数学理论达到了相当高深和丰富的程度。这时人类的历史已进入19世纪。许多人认为数学成就已经登峰造极,数字的形式也不会有什么新的发现了。但在解方程的时候常常需要开平方如果被开方数负数,这道题还有解吗?如果没有解,那数学运算就像走在死胡同中那样处处碰壁。于是数学家们就规定用符号"i "表示"-1"的平方根,即i=,虚数就这样诞生了。"i "成了虚数的单位。后人将实数和虚数结合起来,写成 a+bi的形式(a、b均为实数),这就是复数。在很长一段时间里,人们在实际生活中找不到用虚数和复数表示的量,所以虚数总让人感到虚无缥缈。随着科学的发展,虚数现在在水力学、地图学和航空学上已经有了广泛的应用,在掌握和会使用虚数的科学家眼中,虚数一点也不"虚"了。 数的概念发展到虚和复数以后,在很长一段时间内,连某些数学家也认为数的概念已经十分完善了,数学家族的成员已经都到齐了。可是1843年10月16日,英国数学家哈密尔顿又提出了"四元数"的概念。所谓四元数,就是一种形如的数。它是由一个标量 (实数)和一个向量(其中x 、y 、z 为实数)组成的。四元数的数论、群论、量子理论以及相对论等方面有广泛的应用。与此同时,人们还开展了对"多元数"理论的研究。多元数已超出了复数的范畴,人们称其为超复数。 由于科学技术发展的需要,向量、张量、矩阵、群、环、域等概念不断产生,把数学研究推向新的高峰。这些概念也都应列入数字计算的范畴,但若归入超复数中不太合适,所以,人们将复数和超复数称为狭义数,把向量、张量、矩阿等概念称为广义数。尽管人们对数的归类法还有某些分歧,但在承认数的概念还会不断发展这一点上意见是一致的。到目前为止,数的家庭已发展得十分庞大。参考资料:

98 评论

菜菜~小

凤凰涅盘浴火,你也就知道华罗庚。我来给你个比华罗庚厉害的数学家。简介 翻开近世数学的教科书和专门著作,阿贝尔这个名字是屡见不鲜的:阿贝尔积分、阿贝尔函数、阿贝尔积分方程、阿贝尔群、阿贝尔级数、阿贝尔部分和公式、阿贝尔基本定理、阿贝尔极限定理、阿贝尔可和性,等等。很少几个数学家能使自己的名字同近世数学中这么多的概念和定理联系在一起。然而这位卓越的数学家却是一个命途多舛的早夭者,只活了短短的27年。尤其可悲的是,在他生前,社会并没有给他的才能和成果以公正的承认。[编辑本段]生平 尼耳期.亨利克.阿贝尔(,1802-1829)1802年8月出生于挪威的一个农村。他很早变显示了数学方面的才华。16岁那年,他遇到了一个能赏识其才能的老师霍姆伯(Holmboe)介绍他阅读牛顿、欧拉、拉格朗日、高斯的著作。大师们不同凡响的创造性方法和成果,一下子开阔了阿贝尔的视野,把他的精神提升到一个崭新的境界,他很快被推进到当时数学研究的前沿阵地。后来他感慨地在笔记中写下这样的话:“要想在数学上取得进展,就应该阅读大师的而不是他们的门徒的著作”。[编辑本段]青年时代 1821年,由于霍姆伯和另几位好友的慷慨资助,阿贝尔才得进入奥斯陆大学学习。两年以后,在一本不出名的杂志上他发表了第一篇研究论文,其内容是用积分方程解古典的等时线问题。这篇论文表明他是第一个直接应用并解出积分方程的人。接着他研究一般五次方程问题。开始,他曾错误地认为自己得到了一个解。霍姆伯建议他寄给丹麦的一位著名数学去审阅,幸亏审阅者在打算认真检查以前,要求提供进一步的细节,这使阿贝尔有可能自己来发现并修正错误。这次失败给了他非常有益的启发,他开始怀疑,一般五次方程究竟是否可解?问题的转换开拓了新的探索方向,他终于成功地证明了要像较低次方程那样用根式解一般五次方程是不可能的。 这个青年人的数学思想已经远远超越了挪威国界,他需要与有同等智力的人交流思想和经验。由于阿贝尔的教授们和朋友们强烈地意识到了这一点,他们决定说服学校当局向政府申请一笔公费,以便他能作一次到欧洲大陆的数学旅行。经过例行的繁文缛节的手续和耽搁延宕后,阿贝尔终于在1825年8月获得公费,开始其历时两年的大陆之行。 踌躇满志的阿贝尔自费印刷了证明五次方程不可解的论文,把它作为自己晋谒大陆大数学家们,特别是高斯,的科学护照。他相信高斯将能认识他工作的价值而超出常规地接见。但看来高斯并未重视这篇论文,因为人们在高斯死后的遗物中发现阿贝尔寄给他的小册子还没有裁开。 柏林是阿贝尔旅行的第一站。他在那里滞留了将近一年时间。虽然等候高斯召见的期望终于落空,这一年却是他一生中最幸运、成果最丰硕的时期。在柏林,阿贝尔遇到并熟识了他的第二个伯乐——克雷勒(Crelle)。克雷勒是一个铁路工程师,一个热心数学的业余爱好者,他以自己所创办的世界上最早专门发表创造性数学研究论文的期刊《纯粹和应用数学杂志》而在数学史上占有一席之地,后来人平习惯称这本期刊为“克雷勒杂志”。与该刊的名称所标榜的宗旨不同,实际上它上面根本没有应用教学的论文,所以有人又戏称它为“纯粹非应用数学杂志”。阿贝尔是促成克雷勒将办刊拟议付诸实施的一个人。初次见面,两个人就彼此留下了良好而深刻的印象。阿贝尔说他拜读过克雷勒的所有数学论文,并且说他发现在这些论文中有一些错误。克雷勒非常地谦虚,他已经意识到眼前这位脸带稚气的年轻人具有非凡的数学天才。他翻阅了阿贝尔赠送的论五次方程的小册子,坦率地承认看不懂。但此时他已决定立即实行拟议中的办刊计划,并将阿贝尔的论文载入第一期。于是阿贝尔的研究论文,克雷勒杂志才能逐渐提高声誉和扩大影响。 阿贝尔一生最重要的工作——关于椭圆函数理论的广泛研究就完成在这一时期。相反,过去横遭冷遇,历经艰难,长期得不到公正评价的,也就是这一工作。现在公认,在被称为“函数论世纪”的19世纪的前半叶,阿贝尔的工作[后来还有雅可比(,1804-1851)发展了这一理论],是函数论的两个最高成果之一。[编辑本段]阿贝尔与椭圆函数 椭圆函数是从椭圆积分来的。早在18世纪,从研究物理、天文、几何学的许多问题中经常导出一些不能用初等函数表示的积分,这些积分与计算椭圆弧长的积分往往具有某种形式上的共同性,椭圆积分就是如此得名的。19世纪初,椭圆积分方面的权威是法国科学院的耆宿、德高望重的勒让得( dre,1752-1833)。他研究这个题材长达40年之久,他从前辈工作中引出许多新的推断,组织了许多常规的数学论题,但他并没有增进任何基本思想,他把这项研究引到了“山重水复疑无路”的境地。也正是阿贝尔,使勒让得在这方面所研究的一切黯然失色,开拓了“柳暗花明”的前途。 关键来自一个简单的类比。微积分中有一条众所周知的公式上式左边那个不定积分的反函数就是三角函数。不难看出,椭圆积分与上述不定积分具有某种形式的对应性,因此,如果考虑椭圆积分的反函数,则它就应与三角函数也具有某种形式的对应性。既然研究三角函数要比表示为不定积分的反三角函数容易得多,那么对应地研究椭圆积分的反函数(后来就称为椭圆函数)不也应该比椭圆积分本身容易得多吗? “倒过来”,这一思想非常优美,也的确非常简单、平凡。但勒让得苦苦思索40年,却从来没有想到过它。科学史上并不乏这样的例证“优美、简单、深刻、富有成果的思想,需要的并不是知识和经验的单纯积累,不是深思熟虑的推理,不是对研究题材的反复咀嚼,需要的是一种能够穿透一切障碍深入问题根柢的非凡的洞察力,这大概就是人们所说的天才吧。“倒过来”的想法像闪电一样照彻了这一题材的奥秘,凭借这一思想,阿贝尔高屋建瓴,势如破竹地推进他的研究。他得出了椭圆函数的基本性质,找到了与三角函数中的π有相似作用的常数K,证明了椭圆函数的周期性。他建立了椭圆函数的加法定理,借助于这一定理,又将椭圆函数拓广到整个复域,并因而发现这些函数是双周期的,这是别开生面的新发现;他进一步提出一种更普遍更困难类型的积分——阿贝尔积分,并获得了这方面的一个关键性定理,即著名的阿贝尔基本定理,它是椭圆积分加法定理的一个很宽的推广。至于阿贝尔积分的反演 ——阿贝尔函数,则是不久后由黎曼(,1826-1866)首先提出并加以深入研究的。事实上,阿贝尔发现了一片广袤的沃土,他个人不可能在短时间内把这片沃土全部开垦完毕,用埃尔米特(Hermite)的话来说,阿贝尔留下的后继工作,“够数学家们忙上五百年”。阿贝尔把这些丰富的成果整理成一长篇论文《论一类极广泛的超越函数的一般性质》。此时他已经把高斯置诸脑后,放弃了访问哥延根的打算,而把希望寄托在法国的数学家身上。他婉辞了克雷勒劝其定居柏林的建议后,便启程前往巴黎。在这世界最繁华的大都会里,荟萃着像柯西(,1789-1857)、勒让得、拉普拉斯,1749-1827)、傅立叶(,1768-1830)、泊松(,1781-1840)这样一些久负盛名的数字巨擘,阿贝尔相信他将在那里找到知音。[编辑本段]巨星的陨落 1826年7月,阿贝尔抵达巴黎。他见到了那里所有出名的数学家,他们全都彬彬有礼地接待他,然而却没有一个人愿意仔细倾听他谈论自己的工作。在这些社会名流的高贵天平上,这个外表腼腆、衣着寒酸、来自僻远落后国家的年轻人能有多少份量呢?阿贝尔在写给霍姆伯谈巴黎观感的信中说道:“法国人对陌生的来访者比德国人要世故得多。你想和他们亲密无间简直是难上加难,老实说我现在也根本不奢望能有些荣耀。到头来,任何一个开拓者要想在此间引起重视,都得遇到巨大的障碍。尽管阿贝尔非常自信,但对这一工作能否得到合理评价已经深有疑虑了。他通过正常渠道将论文提交法国科学院。科学院秘书傅立叶读了论文的引言,然后委托勒让得和柯西负责审查。柯西把稿件带回家中,究竟放在什么地方,竟记不起来了。直到两年以后阿贝尔已经去世,失踪的论文原稿才重新找到,而论文的正式发表,则迁延了12年之久。 从满怀希望到渐生疑虑终至完全失望,阿贝尔在巴黎空等了将近一年。他寄居的那家房东又特别吝啬刻薄,每天只供给他两顿饭,却收取昂贵的租金。一天他感到身体很不舒畅,经医生检查,诊断为肺病,尽管他顽强地不相信,但实情是他确已心力交瘁了。阿贝尔只好拖着病弱的身体,怀着一颗饱尝冷遇而孤寂的心告别巴黎回国。当他重到柏林时,已经囊空如洗。幸亏霍姆伯及时汇到一些钱,才使他能在柏林稍事休整后返回家园。 是谁该对阿贝尔的厄运负责呢?人们很自然会想起审评阿贝尔论文的柯西、勒让得。柯西当时38 岁,正年富力强,创造力旺盛,忙于自己的事,顾不上别人而疏忽铸下了大错。勒让得怎么样呢?年逾古稀,功成名就,在法国科学界享有崇高的威望,他当时不可能像柯西那样忙着搞研究,理应对培养、识拔年轻一代的科学人才负有更多责任。然而主要的是,阿贝尔这篇论文所处理的题材恰恰是勒让得所熟悉的,从某种意义上来说,是他的世袭领地。尽管论文里包含着许多新奇、艰深的概念,但导致这些概念的基本思想却是简单的。一个外行也许没有能力欣赏这种简单思想的优美性和深刻性,但勒让得对所论问题却决非外行,他自己思者过几十年,深知在旧有基本思想框架内,知识业已达到饱和状态,要获取新的知识,除非打破框架,引进新的基本思想。对他来说,其实根本无须仔细阅读论文,只有稍事点拨,三言两语说明一下基本思想,就足以起到振聋发聩的作用。但是他却好像毫无感受,实在令人费解。事实上,阿贝尔论文的内容,他并非一无所知,当他得知另一位青年数学家雅可比(Jacobi)也独立做了椭圆函数理论方面相当系统的工作后,他曾告诉过雅可比,有一个年轻的斯堪的纳维亚人已先他而专美于家了。雅可比如饥似渴地读完阿贝尔那篇失落两年又奇迹般出现的论文,不禁气愤地写信责问科学院:“阿贝尔先生作出了一个多么了不起的发现啊!有谁看到过别的堪与比美的发现呢?然而,这项也许称得上我们世纪最伟大的数学发现,两年以前就提交给你们科学院了,却居然没有引起你们的注意,这究竟是怎么一回事呢”?勒让得复信为自己提出的辩解是令人失笑的:“我们感到论文简直无法阅读,因为它是用几乎白色的墨水写的,字母拼写得很糟糕,我们都认为应该要求作者提供一个较清楚的文本。真是掩耳盗铃,文过饰非。” 让我们再看看高斯。高斯一生勤勉,有许多伟大的数学发现,却错过了发现这个伟大数学人才的机会。科学史经常在告诫:大凡富有创造性的见解,开始总是与传统观念相抵触的。 但阿贝尔最终毕竟还是幸运的,他回挪威后一年里,欧洲大陆的数学界渐渐了解了他。继失踪的那篇主要论文之后,阿贝尔又写过若干篇类似的论文,都在“克雷勒杂志”上发表了。这些论文将阿贝尔的名字传遍欧洲所有重要的数学中心,他已成为众所瞩目的优秀数学家之一。遗憾的是,他处境闭塞,孤陋寡闻,对此情况竟无所知。甚至连他想在自己的国家谋一个普通的大学教职也不可得。1829年1月,阿贝尔的病情恶化,他开始大口吐血,并不时陷入昏迷。他的最后日子是在一家英国人的家里度过的。因为他的未婚妻凯姆普(Kemp)是那个家庭的私人教师。阿贝尔已自知将不久于人世,这时,他唯一牵挂的是他女友凯姆普的前途,为此,他写信给最亲近的朋友基尔豪(Kiel-hau),要求基尔豪在他死后娶凯姆普为妻。尽管基尔豪与凯姆普以前从未觌面,为了让阿贝尔能死而瞑目,他们照他的遗愿做了。临终的几天,凯姆普坚持只要自己一个人照看阿贝尔,他要“独占这最后的时刻”。 1829年4月6日晨,这颗耀眼的数学新星便过早地殒落了。阿贝尔死后两天,克雷勒的一封信寄到,告知柏林大学已决定聘请他担任数学教授。损失是难以估计的,如果阿贝尔活到应的的寿命,他又将要做出多少新的贡献啊!

252 评论

iamYolandaXYZ

华罗庚,1910年11月12日出生于江苏金坛县,父亲以开杂货铺为生。他幼时爱动脑筋,因思考问题过于专心常被同伴们戏称为“罗呆子”。他进入金坛县立初中后,其数学才能被老师王维克发现,并尽心尽力予以培养。初中毕业后,华罗庚曾入上海中华职业学校就读,因拿不出学费而中途退学,故一生只有初中毕业文凭。 此后,他开始顽强自学,每天达10个小时以上。他用5年时间学完了高中和大学低年级的全部数学课程。1928年,他不幸染上伤寒病,靠新婚妻子的照料得以挽回性命,却落下左腿残疾。20岁时,他以一篇论文轰动数学界,被清华大学请去工作。 从1931年起,华罗庚在清华大学边工作边学习,用一年半时间学完了数学系全部课程。他自学了英、法、德文,在国外杂志上发表了三篇论文后,被破格任用为助教。1936年夏,华罗庚被保送到英国剑桥大学进修,两年中发表了十多篇论文,引起国际数学界赞赏。1938年,华罗庚访英回国,在西南联合大学任教授。在昆明郊外一间牛棚似的小阁楼里,他艰难地写出名著《堆垒素数论》。1946年3月,他应邀访问苏联,回国后不顾反动当局的限制,在昆明为青年作“访苏三月记”的报告。1946年9月,华罗庚应纽约普林斯顿大学邀请去美国讲学,并于1948年被美国伊利诺依大学聘为终身教授。不久,妻子带着三个儿子来到美国与其团聚。 1949年,华罗庚毅然放弃优裕生活携全家返回祖国。1950年3月,他到达北京,随后担任了清华大学数学系主任、中科院数学所所长等职。50年代,他在百花齐放、百家争鸣的学术空气下著述颇丰,还发现和培养了王元、陈景润等数学人才。1956年,他着手筹建中科院计算数学研究所。1958年,他担任中国科技大学副校长兼数学系主任。从1960年起,华罗庚开始在工农业生产中推广统筹法和优选法,足迹遍及27个省市自治区,创造了巨大的物质财富和经济效益。1978年3月,他被任命为中科院副院长并于翌年入党。 晚年的华罗庚不顾年老体衰,仍然奔波在建设第一线。他还多次应邀赴欧美及香港地区讲学,先后被法国南锡大学、美国伊利诺依大学、香港中文大学授予荣誉博士学位,还于1984年以全票当选为美国科学院外籍院士。1985年6月12日,他在日本东京作学术报告时,因心脏病突发不幸逝世,享年74岁。

196 评论

en20120705

欧拉:是数学史上著名的数学家,他在数论、几何学、天文数学、微积分等好几个数学的分支领域中都取得了出色的成就。 不过,这个大数学家在孩提时代却一点也不讨老师的喜欢,他是一个被学校除了名的小学生。

89 评论

BACCHUS周伯通

爱因斯坦在《自述》中说:“在12岁时,我经历了另一种性质完全不同的惊奇:这是在一个学年开始时,当我得到一本关于欧几里得平面几何的小书时所经历的。这本书里有许多断言,比如,三角形的三个高交于一点,它们本身虽然并不是显而易见的,但是可以很可靠地加以证明,以至任何怀疑似乎都不可能。这种明晰性和可靠性给我造成了一种难以形容的印象。至于不用证明就得承认公理,这件事并没有使我不安。如果我能依据一些其有效性在我看来是无容置疑的命题来加以证明,那么我就完全心满意足了。比如,我记得,在这本神圣的几何学小书到我手中以前,有位叔叔①曾经把毕达哥拉斯定理告诉了我。经过艰巨的努力以后,我根据三角形的相似性成功地‘证明了’这条定理;在这样做的时候,我觉得,直角三角形各个边的关系‘显然’完全决定于它的一个锐角。在我看来,只有在类似方式中不是表现得很‘显然’的东西,才需要证明。而且,几何学研究的对象,同那些‘能被看到和摸到的’感官知觉的对象似乎是同一类型的东西。这种原始观念的根源,自然是由于不知不觉存在着几何概念同直接经验对象的关系,这种原始观念大概也就是康德提出那个著名的关于‘先验综合判断’可能性问题的根据。” ①指赫尔曼·爱因斯坦的弟弟雅各布·爱因斯坦。这段颇长的自述是我们理解爱因斯坦科学思想形成发展的重要资料。一个12岁的孩子,在不可思议的感受中迷上了数学,而且初次领略了一个古老又永恒的哲学命题:思维与存在的关系。一个直角三角形,两条直角边的平方相加等于斜边的平方。这个平方并不是显而易见的,可是却能证明。人的思维能证明不是显而易见的事情,这是多么奇妙!那么量一量行不行呢?我们现在无法知道小爱因斯坦当时是否作过这样的设想。从上边引证的自述来看,爱因斯坦直觉地感到:不行。一千次、一万次量度不能代替一次证明,一次证明却能代替一千次、一万次量度。几何学给爱因斯坦带来的思维奇妙性,使他来不及按部就班,竟一口气把《圣明几何学小书》学到最后一页。---摘<爱因斯坦传>

260 评论

玖兰卅麻

高思,华罗庚,陈景润

320 评论

相关问答

  • 学年论文介绍

    AMG系列同样代表着梅赛德斯-奔驰在汽车运动领域的非同凡响,作为梅赛德斯汽车集团下面最具动力性能的品牌,AMG系列皆配有马力非常强劲的V6、V8,乃至V12发动

    bluelights 4人参与回答 2023-12-06
  • 介绍数码产品的杂志

    给这。《电脑报》《软件指南》《计算机世界》《网友世界》《电脑应用文萃》《大众软件》《微型计算机》 《中国电脑教育报》《网管员世界》《中国计算机报》《电脑商情报

    亲亲E宝贝 3人参与回答 2023-12-09
  • 中职数学论文1000字

    摘要:孔子曾经说过:“知之者不如好知者,好知者不如乐知者。”数学教师要不断提高教学艺术,从教材内容和学生实际出发,把数学和现实生活紧密结合,把书本上的数学问题变

    爱吃爱疯 2人参与回答 2023-12-12
  • 八上数学论文1000字

    无论是身处学校还是步入社会,大家都接触过论文吧,论文是描述学术研究成果进行学术交流的一种工具。你知道论文怎样写才规范吗?以下是我为大家收集的数学小论文作文,仅供

    小百合2011 3人参与回答 2023-12-07
  • 家庭生活指南杂志介绍

    当代旅游》是省级人文社科类综合期刊,由黑龙江省科学技术协会主管。《家庭生活指南》杂志社主办。万方收录。普通期刊吧

    haorantaba 8人参与回答 2023-12-07