• 回答数

    4

  • 浏览数

    235

小蓉~蓉
首页 > 学术论文 > 工业视觉检测论文

4个回答 默认排序
  • 默认排序
  • 按时间排序

马铃薯菇凉

已采纳

觉察到的内容肯定好

152 评论

TTTTTTTT醬

我肯定好的能,我能完成任务

156 评论

梁山好汉v

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

318 评论

草莓天天见

视觉关系识别/检测 任务不仅需要识别出图像中的物体以及他们的位置(detection),还要识别物体之间的关系(relationship)。例子如下图所示,输入为一张图片,输出为objects和bounding boxes,以及objects之间的关系,如

视觉关系识别是图像理解的基础,可以 应用 在

挑战:

这篇文章将整理与视觉关系相关的论文,并作简要的介绍。论文列表:

第一篇是比较经典的论文,提出了一个数据集VRD和一个结合语言先验的关系预测模型。

Visual Phrases只有13个类型,Scene Graph 有两万多关系,但是它平均每个对象只有大约2个谓词关系。除了这三个数据集,还有有名的 VIsual Genome 大数据集,包含99658张图片,19237个关系,标注了物体类型,位置,属性和物体间的关系(场景图),还有caption,qa。虽然数据量大了,但是数据集的标注还是会有一些没有被标注的,毕竟组合多。

思考:论文利用了语言先验word embedding,对预测起到了很大的帮助,但是先验知识可能会使得关系预测倾向于频繁的关系,而忽略了视觉方面的信息。一个解决方案是先预训练视觉模型。然而,真正合理的融合先验的方式我觉得不是简单的乘法(先验可能会误导),是一个思考的点。

**Motivation: **这篇论文的启发是来源于知识图谱中,使用转移向量(translation vector)来表示实体之间的关系(见 Trans系列的知识表示 )。在视觉关系中,通过将对象的视觉特征映射到低维的关系空间中,然后用对象间的转移向量来表示对象之间的关系,比如person+ride=bike。如下图所示:

所以为了让 能够接近 ,即相似,loss函数为

在实验中,单从在VRD数据集上的predicate预测,与上一篇论文Lu对比是没有提升的(44<47),这是这篇论文中没有说明的,是我从两篇论文的实验数据中发现的。这篇论文在另外两个任务上效果比Lu的好些,我觉得有可能是用了Faster RCNN的缘故。 除了这三个任务的实验对比,还加了图像检索,zero-shot关系检测(没有Lu的好),特征重要性分析的实验。实验也表明了关系检测任务对目标检测任务的准确率的提升,不过其实很少。

更多相关的可参考原论文。

思考:论文用TransE来表示关系空间中对象与predicate的关系,如何映射到关系空间,更好的表达对象的联系,甚至predicate间的关系,是值得研究的一个点。(比如结合语言先验等,因为我觉的它的效果其实应该比不上加了语言先验的)

这篇论文跟上一篇论文类似,都是将中的subject和object映射到一个空间中,他们间的关系表示为 .上一篇是基于知识图谱embedding的TransE(NIPS2013,Translating embeddings for modeling multi-relational data),而这一篇是基于TransD(ACL2015,Knowledge graph embedding via dynamic mapping matrix)。这是一个研究的方向,怎么将object,relationship很好的在embedding空间中表示。 论文的整个框架如图:

思考:这也是篇关于投射对象和关系到另一空间的论文,不过任务稍有不同,效果也比上一篇好些。同上,embedding也是可研究的一个方向。

这篇论文使用场景图scene graph来建模图片中对象以及它们的关系,任务是生成场景图:

这篇论文的亮点就是利用上下文信息以及消息传递,迭代更新以更好地预测关系。这是一个在场景图层级上的新的预测关系的方式,其消息传递方法等都是可以改进的地方,甚至结合embedding。

这篇论文的主要贡献是使用因式分解的方法来得到信息先验(a factorization scheme that yields highly informative priors),也就是关系的先验分布,即两个object间的predicate分布。 这个分布是通过张量分解的方法得到,具体是: (1) 张量构建Tensorize :关系张量 , i, j是对象,k是关系,表示为关系k的矩阵 的堆叠,每一个值对象i, j在数据集中有关系k的次数。张量表示可以反映objects间的内在联系,关系分布等。

最后BP训练SG网络,θ设为. 在实验中,论文对比了Lu的Visual Relationship Detection with Language Priors,和Xu的Scene Graph Generation by Iterative Message Passing,都有较好的提升。

思考:这篇论文通过张量分解的方式来得到关系的先验分布,与论文Visual Relationship Detection with Language Priors用到的语言先验有着异曲同工之处,都是用predicate的先验分布来调整网络预测的关系,提升zero shot能力。 不过我认为这种直接相乘的调整方式是比较粗糙的,需要更好的方式来融合先验分布与视觉上预测的分布。

这是一篇用场景上下文信息和实体间的关系来改进目标检测的论文,举个被错误检测的例子说明上下文的作用:

这篇论文做的任务不是关系预测,而是利用关系来消歧关系中的相同类的对象,其实是根据关系元组,来定位对象的位置。比如下图中需要确定人踢球是图中的哪个人,在什么位置。

论文首先用attention到对象object/subject,然后用predicate的卷积核来进行注意力的shift,同时object和subject需要结合。

这又是李飞飞团队做的工作(他们团队做了很多relationship相关的工作,语言先验那篇,迭代消息传递那篇等),做的是语句生成图像,利用了场景图表示语句中对象间的关系/联系,一个很有趣的研究,应该是第一个使用场景图的图像生成尝试了。

Sentence一般包含多个对象,以及对象间关系的描述,是比较复杂的,从上图也可以看出,直接从语句到图像效果是很差的。但是当我们把语句解析为场景图,然后再生成图像,可以更好的生成图像表示对象间的关系。 具体做法大致是根据场景图做布局预测 (layout prediction) 预测对象的位置,最后结合噪声,用生成网络生成图像。具体细节这里就不啰嗦了,列一下最终效果吧。

可以看出,对象的位置基本位于正确的位置,不过生成的图像质量不是很高,所以还是有很大的改进空间的。

这篇论文是Arxiv上今年7月份的论文,利用图像中的对象间的关系和对象属性,做QA任务。关系挖掘根据图像和问题得到一系列相关的fact——关系,对象属性,然后再attention到需要的fact上,联合视觉特征最后得到最终answer。

思考:这种提取fact的方法为QA提供了高层的语义信息,也符合人的思维方式。相比于我之前调研过的方法( 一文带你了解VQA ),可以认为这是知识的补充,之前的方法有的是只有类,属性信息,或者是额外的文本形式的知识,本论文的方法多了关系的检测,且用一个网络来提取高层语义用于QA,相比直接做数据增强更具解释性。不过论文没有用到那个bottom-up attention,这是我觉得可以改进的地方。

至此,有关VIsual Ralationship的相关问题,方法大家应该有个大致的了解和收获。有什么问题和想法欢迎一起交流学习。

325 评论

相关问答

  • 视觉显著性检测论文

    (该分享持续更新中...) 这篇论文主要有三个贡献点: 目前,物体检测、语义分割等技术都是集中在如何在图片上检测出物体,但是忽略了物体与物体之间的关系。

    切尔西在成都219 3人参与回答 2023-12-09
  • 机器视觉检测论文如何写

    怎样写好论文---一个大学教授、审稿专家的写作经验 给全国十五、六种学报、杂志审稿占用了我业余生活的大部分时间,每年的审稿量少说有100篇。近年来,觉得稿件质量

    s290443260 4人参与回答 2023-12-07
  • 机器视觉口罩检测论文怎么写

    记得是写论文,我觉得还是比较好写,你也可以查找相关的资料

    M15981511985 4人参与回答 2023-12-07
  • 机器人视觉检测论文

    机器人是由计算机控制的通过编程具有可以变更的多功能的自动机械,下面是我整理的机器人技术论文,希望你能从中得到感悟! 刍议智能机器人及其关键技术 【摘 要】文章介

    火炎焱加冰 3人参与回答 2023-12-06
  • 基于视觉的疲劳检测论文

    视觉传达毕业论文题目 视觉传达毕业论文题目具体有哪些呢,大家有了解过吗?下面是我为大家介绍的视觉传达毕业论文题目,欢迎参考和阅读,希望能帮到大家! 视觉传达毕业

    心赏198808 3人参与回答 2023-12-10