小麻烦ly
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》 摘要:作为人类,我们有必要去了解自己,这样才能更加地进步。人性是从根本上决定并解释着人类行为的那些人类天性。本文利用集合论的思想对此进行了一些讨论。 关键词:人性;理性;社会性;自然性;集合论思想 一、引言 在长期以来的生活中,人类的大脑会在无意识的作用下储存某些事物的信息,由于并没有通过大脑严谨的思考,所以这些信息大部分是外在的,只是事物表面的一些形态特征而已。这些信息并非零散的分布,之间没有联系。而是之间存在着一定的关联,虽然结构不严谨,可能其中会有错误。但是有时候却可以起到一定的作用。但是我们不能仅依靠这样的意识形态,因为我们有自我意识,需要不断完善,不断进步。依靠这样的意识是不可能看到事物的本质的。 有时候你问某个人为什么,他可能会答道:“凭直觉”。我并不否认直觉所带来的“便利”,但这种“便利”是给自己不去思考事物本质的借口。直觉也是一种意识形态,但是这种意识是在潜意识之下的,这样意识的形成也是要通过长时间的作用。大脑可以自己不断地调整,不断地完善,但是这个过程相当缓慢。要进步可不能依靠这样的思想。 现在我想说的是,我们必须减少对这些意识的依赖。因为这些意识都不是通过严谨的思考之后得到的产物,所以用这样的意识去做出一些反应是很容易出错的。这也会阻碍我们对真实世界的探索。我们应该挖掘出这样的意识,分析其中的思想结构,将不好的思想去掉,并且把有缺陷的思想不断加强和完善。这样一来,我们就会更加理性。人就具有这样的性质——理性。因此人类才能进步,文明才能发展。 二、理论分析 假设A={a1,a2,…,an},B={b1,b2,…,bm}。若A?奂B,则说明A中的n个元素均可以在B中找到,且m>n。反之,说明中的个元素均可以在A中找到,且n>m。若A=B,则说明中的所有元素与B中的所有元素相同,且n=m。如果某一个元素可以在集合A中找到,那么记作a∈A。 结合以上思想,对人与动物进行分析,动物={青蛙,鱼,狗,猫,人,……},可以看出人是属于动物的,即人动物。并且将这样的集合叫做普通集合,以区分下面所叙述的性质集合。既然青蛙,鱼,狗,猫,人等都属于动物,那么也就是说它们具有共同的性质,比如:没有细胞壁,必须利用现成的有机物获得能量,无叶绿体,能自由移动等。但是人除了这些共同性质之外,还有其他的性质。也就是说,从性质集合上看,动物的性质集合包含于人的性质集合中的。即动物的所有性质,人类均有。我们将性质集合中的元素命名为“属差”,而将普通集合命名为“种”,普通集合中的元素命名为“属”。 如果B的性质集合包含于A的性质集合,那么A和B就具有相同的属差,并且B的所有属差均是A中的属差。属差越多,则性质集合的表述范围就越小,即越受限制。那么B显然比A的表述范围大。说明B可以述说A,即A是B,其中A就是主词,而B就是宾词,则B的所有属差是A的属差。 那么按照上面所说,动物可以表述人,即人是动物。“人”的属差比“动物”的要多,也就是限制的条件要多一些。 有些存在于主体中的事物,其定义是不能用来表述一个主体的。例如:对于白人来说,“白”就依存于身体这个主体,并被用来表述身体这个主体,也就是说身体可以被说成是白的,但是要注意,“白”的定义却不能被用来表述身体。 属和种的属差都可适用于第一实体,种的属差适用于属,所以属和种决定了实体的性质。例如:“人”和“动物”的属差都可适用于个别的人,可以说人是动物,个别的人是人,个别的人是动物。也可以这样想:对“动物”的定义肯定也适用于对“人”的定义,因为“人”是属于“动物”的。所谓的“第一实体”,比如“个别的人”、“个别的老虎”等,是真实存在的个体,并不依存于其他个体。[1] 属差的定义也能适用于属和个体,并且还可以用来表述属和个体。例如:“有脚的”、“有手的”的定义也可以适用于“人”和个别的人。并且还可以说“人”和个别的人是“有手的”。既然属差的定义可以适用于个体,那么属差也就可以决定了个体的性质。而且这些性质都可以用属差表述其个体。 分析到这里,我们应该感觉到有点思路了。也就是我们现在要找到这样的属差,然后根据这些属差的定义来表述个体。 但是还有一个前提,那就是个别的人是不是实体呢?因为刚才我们得到一个结论:属和种决定了实体的性质。也就是这些分析都是以实体作为前提的。所以我们要知道个别的人是不是实体。其实我们从实体最原始,最根本的定义出发,个别的人的确属于实体,因为是真实存在的,并且不依存于其他主体。 三、结果分析 1.人具有理性:有一篇关于鱼“自杀”的报道。我就在想鱼如何“自杀”的呢?自杀就说明鱼有自我意识,能够自己选择死亡。但科学上表明自然界(这里并不指整个宇宙)中除人类外,其他动物都只有直接意识,而没有自我意识。难道科学不客观?其实并非这样,只不过是媒体的故意渲染而已。鱼只是因为环境的改变而做出本能的反应,这样的本能就是直接意识,鱼并没有思考这样做会不会导致死亡,只是出于本能。那么人与其他动物相比,不同之处就在于人有理性。 比如一只老虎饿了,看到食物就会扑上去吃。但是人饿了却不会看到食物就扑上去,而要想想这能不能吃。这就是与其他动物的不同之处。也就是说“理性”是“人”的一个属差。 2.人具有社会性:人处在社会之中,与其他个体之间进行沟通,交流信息。进行物质的分享、分割和交换。社会是互动的,不可能是个别的个体所支撑。也就说明我们身处社会,只有聚集起来才能共同完成分享、分割和交换。有人说自己很孤独,其实这并不是真正的孤独,也不可能存在真正的孤独。因为人不可能摆脱社会性而存在。可能有人会对刚才我说的“不会有真正的孤独”有意见,他们会说:“既然没有孤独,那么创造这个词不就没意义吗?”孤独只不过是人们的感受,感受并不能反应事物的真实规律。所以我在之前也说过,我们必须放弃一些错误的思想。这样才不会被感觉和表面现象所蒙蔽。 在人类社会这个庞大的群体性活动中,无论是什么简单的活动,都不可避免要与其他个体进行信息传达。这样人类才能发展和繁衍下去。这样说来,动物也应当存在社会性。这显然是肯定的。一些动物也是具有这样的性质的,例如:蚂蚁,蜜蜂等。可见“社会性”也是“人”的一个属差。 3.人具有自然性:人类是自然界中的一员,就不可能不具有自然性。人类的组织结构、生理结构和自然界交往过程所产生的一些基本特征都表现出人的自然性。人类不可能脱离自然性而独立存在。而其他生物也一样具有这样的性质。所以“自然性”也是“人”的一个属差。 四、结束语 我们作为人类,有必要去了解自己,这样才能更加地进步。通过集合论的思想来分析人性,是本文的亮点。除了三个性质外,还存在着其他的性质。在这里由于自己的智慧有限,没有给出更多的性质,但是本文重点是在于提供一个可行的分析 方法 。通过数学的逻辑,会使得分析变得更加严谨和系统化。这是本文做出的大胆尝试。 参考文献: [1]亚里士多德.亚里士多德全集(第一卷)[M].苗力田,译.北京:中国人民大学出版社,1990. 康托尔的集合论论文篇2:《集合论与第三次数学危机》 数学的产生和发展,始终与人类社会的生产和生活有着密不可分的联系。在新教材中,任何一个新概念的引入,都特别强调它的现实背景、数学理论发展背景或数学发展的历史背景,只有这样才能让学生感到知识发展水到渠成。所以特别希望在教学中能不时渗透数学史的相关知识,充分发挥和利用数学史的 教育 价值,使学生通过了解数学史,而更加全面更加深刻地理解数学、感悟数学。 一、集合论的诞生 一般认为,集合论诞生于1873年底。1873年11月29日,康托尔(,1845-1918)在给戴德金(JuliusWilhelmRichardDedekind,1831—1916)的信中提问“正整数集合与实数集合之间能否一一对应起来?”这是一个导致集合论产生的大问题。几天后,康托尔用反证法证明了此问题的否定性结果,“实数是不可数集”,并将这一结果以标题为《关于全体实代数数集合的一个性质》的论文发表在德国《克莱尔数学杂志》上,这是“关于无穷集合论的第一篇革命性论文”,在其系列论文中,他首次定义了集合、无穷集合、导集、序数、集合运算等,康托尔的这篇 文章 标志着集合论的诞生。 二、集合论成为现代数学大厦的基础 康托尔的集合论是数学史上最具革命性和创造性的理论,他处理了数学上最棘手的对象——无穷集合,让无数因“无穷”而困扰许久的数学家们在这种神奇的数学世界找回了自己的精神家园。它的概念和方法渗透到了代数、拓扑和分析等许多数学分支,甚至渗透到物理学等其他自然学科,为这些学科提供了奠基的方法。几乎可以说,没有集合论的观点,很难对现代数学获得一个深刻的理解。 集合论诞生的前后20年里,经历千辛万苦,但最终获得了世界的承认,到了20世纪初,集合论已经得到数学家们的普遍赞同,大家一致认为,一切数学成果都可以建立在集合论的基础之上了,简言之,借助集合论的概念,便可以建立起整个数学大厦,就连集合论诞生之初强烈反对的著名数学家庞加莱(JulesHenriPoincaré,1854-1912)也兴高采烈地在1900年的第二次国际数学家大会上宣布:“借助集合论概念,我们可以建造整个数学大厦。今天,我们可以说绝对的严格性已经达到了。”然而,好景不长,一个震惊数学界的消息传出,集合论是有漏洞的!如果是这样,则意味着数学大厦的基础出现了漏洞,对数学界来说,这将是多么可怕啊! 三、罗素(BertrandRussell,1872-1970)悖论导致第三次数学危机 1903年,英国数学家罗素在《数学原理》一书上给出一个悖论,很清楚地表现出集合论的矛盾,从而动摇了整个数学的基础,导致了数学危机的产生,史称“第三次数学危机”。 罗素构造了一个所有不属于自身(即不包含自身作为元素)的集合R,现在问R是否属于R?如果R属于R,则R满足R的定义,因此R不属于自身,即R不属于R。另一方面,如果R不属于R,则R不满足R的定义,因此R应属于自身,即R属于R,这样,不论任何情况都存在矛盾,这就是有名的罗素悖论(也称理发师悖论)。 罗素悖论不仅动摇了整个数学大厦的基础,也波及到了逻辑领域,德国的著名逻辑学家弗里兹在他的关于集合的基础理论完稿而即将付印时,收到了罗素关于这一悖论的信,他立刻发现,自己忙了很久得出的一系列结果却被这条悖论搅得一团糟,他只能在自己著作的末尾写道:“一个科学家所碰到的最倒霉的事,莫过于是在他的工作即将完成时却发现所干的工作的基础崩溃了。”这样,罗素悖论就影响到了一向被认为极为严谨的两门学科——数学和逻辑学。 四、消除悖论,化解危机 罗素悖论的存在,明确地表示集合论的某些地方是有毛病的,由于20世纪的数学是建立在集合论上的,因此,许多数学家开始致力于消除矛盾,化解危机。数学家纷纷提出自己的解决方案,希望能够通过对康托尔的集合论进行改造,通过对集合定义加以限制来排除悖论,这就需要建立新的原则。 在20世纪初,大概有两种方法。一种是1908年由数学家策梅洛(Zermelo,ErnstFriedrichFerdinand,1871~1953)提出的公理化集合论,把原来直观的集合概念建立在严格的公理基础上,对集合加以充分的限制以消除所知道的矛盾,从而避免悖论的出现,这就是集合论发展的第二阶段:公理化集合。 解铃还须系铃人,在此之前,危机的制造者罗素在他的著作中提出了层次的理论以解决这个矛盾,又称分支类型化。不过这个层次理论十分复杂,而策梅洛则把这个方法加以简化,提出了“决定性公理(外延公理)、初等集合公理、分离公理组、幂集合公理、并集合公理、选择公理和无穷公理”,通过引进这七条公理限制排除了一些不适当的集合,从而消除了罗素悖论产生的条件。后来,策梅洛的公理系统又经其他人,特别是弗兰克尔()和斯科伦()的修正和补充,成为现代标准的“策梅洛——弗兰克尔公理系统(简称ZF系统)”,这样,数学又回到严谨和无矛盾的领域,而且更促使一门新的数学分支——《基础数学》迅速发展。 五、危机的启示 从康托尔集合论的提出至今,时间已经过去了一百多年,数学又发生了巨大的变化,而这一切都与康托尔的开拓性工作密不可分,也和数学家们的艰辛努力密不可分。从危机的产生到解决,我们可以看到,数学的发展跟提出问题和面对困难是离不开的,期间要经历无数的挫折和失败,但是只要坚持,终会走向成功。 矛盾的消除,危机的化解,往往给数学带来新的内容,新的变化,甚至革命性的变革,这也反映出矛盾斗争是事物发展的历史性动力的基本原理。正如数学家克莱因(FelixChristianKlein1849-1925)在《数学——确定性丧失》中说:“与未来的数学相关的不确定性和可疑,将取代过去的确定性和自满,虽然这次悖论已经找到解释,危机也已化解,但是更多的还是未知,因为只要仔细分析,矛盾又将会被认识更为深刻的研究者发现,这种发现不应该被认为是‘危机’,而应该感到,下一个突破的机会来到了。” 参考文献: 1.《普通高中课程标准实验教科书——数学必修1》教师教学用,人民教育出版社 2.胡作玄,《第三次数学危机》 康托尔的集合论论文篇3:《模糊集合论视角下的隐喻》 【摘 要】本文从模糊集合论的角度出发,研究隐喻解读过程中的逻辑真值问题,揭示出隐喻的模糊性是固有的,客观的,对人类认识世界以及进行文学创作具有重要作用。 【关键词】模糊集合论;隐喻;文学创作 模糊性是自然语言的本质特征之一,客观事物自身范畴的模糊性、人类认知的局限性以及不同的话语语境均会导致模糊语言的形成。模糊集合论从诞生伊始,便开始了与诸多学科的交叉研究,与语言学的结合使得我们在语义研究方面有了新的视角。隐喻作为一种特殊的语义现象,其解读过程显现出模糊语言的特点。隐喻的模糊性反映出人类的潜逻辑规律,是客观的,隐性的,它不仅是人类心理范畴化的结果,也是人类模糊思维的产物,所以模糊集合论为我们研究解析隐喻开辟了新的窗口[1]。 1965年,美国控制论专家札德受语言模糊性的启发在《信息与控制》杂志上发表了论文《模糊集合》,最早提出了“模糊集合论”的概念。传统的集合论强调,任何一个集合的成员要么属于它(隶属度为1),要么不属于它(隶属度为0),只有两种真值情况[2]。但是如果对自然界中的诸多对象进行分类,我们经常会找不到能够精确判定其身份的依据。所以, 札德在论文《模糊集合》中对模糊集的定义为: 设X是由点构成的一个区间, 区间内的类属性元素用x表示, 即X ={x}。在区间X中,模糊集A由具有构成该集合元素属性的隶属函数fA(x)表示。该函数与区间[ 0, 1 ]内的任一实数相关联,此对应值表示x所具有的构成A的资格程度。如果区间内设置两个临界点, 即0 <β <α < 1, 那么我们就会获得一种三值逻辑: 如果fA(x) ≥α, 则x属于A;如果fA(x) ≤β, 则x不属于A; 如果隶属函数fA(x) 所表示的值位于α和β之间,则x具有一种相对于A的中间状态。模糊集合论之所以适用于语言研究,是因为语言范畴实际上就是某一个论域中的模糊集合。某一范畴中所有成员共有的典型属性构成此范畴的核心部分,它相当于集合的定义,这部分是明确的,清晰的;相比较而言,范畴的边缘却是模糊的,很难对其进行明确地界定,此部分相当于集合的外延,也就是构成该集合的所有元素。传统集合论实际上是二值逻辑,一个命题,即一个表达明确意义的陈述句,其真值只能是真(记作“1”),或者是假(记作“0”),没有第三种可能性。例如“汤姆是名学生”这个命题,只允许取值“1”或“0”。但是,如果我们将这个 句子 中的“学生”加个修饰词,变成“好学生”,问题就出现了。因为“好”是个模糊概念,其内涵容易辨认,外延却不明确。对于这样的命题,如果用传统的集合论就很难判断其真值。基于二值逻辑的缺陷,札德提出了“隶属度”的概念。即对于像“好”、“坏”这样的模糊概念的集合,规定其成员对该集合的隶属程度,可以取闭区间[0,1]内的任何实数值。模糊逻辑本质上是一种多值逻辑,这使得模糊集合论在研究隐喻时具有特别重要的价值。 模糊集合论为隐喻真值的合法性提供了依据。隐喻的理解有赖于对两组不同范畴的特征的识别,如果我们要把“A is B”视为隐喻,而非字面意思,那我们就需要确定A和B的所指。句法,语义以及语境都可以帮助我们确定其含义,但是最终还是意义的解读决定对相似属性和不同属性筛选的结果 [3]。要想理解隐喻所指双方语义属性的比较过程,我们可以求助于模糊集合论的概念。通过模糊不同集合的界限,隐喻所指某一集合的属性可以部分的与其他集合的属性相结合,进而克服精确定义所带来的阻碍。从语言的表层结构来看, 隐喻的本体集合与喻体集合是不相容的。如果我们运用模糊逻辑的开放性原理, 就可以对这两个不同集合中的属性进行对比区分, 找到相互类似的属性以及不具有可比性的属性。 以莎士比亚名句“Juliet is the sun.”(朱丽叶是太阳)为例: “太阳”是无生命语义标记的子集, “朱丽叶”是有生命语义标记的子集。由于这个隐喻指出了太阳对于人类的重要性与朱丽叶对于罗密欧的重要性之间的相似性,相关元素属性的隶属函数是一个小于1的值,使得此隐喻带有较强的启示力和暗示性。一般来讲,根据逻辑真值,可以把隐喻分为epiphor(表征性隐喻)与diaphor(暗示性隐喻)。威尔赖特( P. Wheelwright)在1962年出版的《隐喻和现实》(Metaphor and reality)中指出epiphor 的基本功能在于表达(express), 而diaphor的主要作用是暗示(suggest) [4]。隐喻所指的并置会引起语义集合的矛盾,所以有些学者把隐喻视为不合语法逻辑的实体。但是如果我们通过模糊集合论中三值逻辑来解读隐喻,我们就可以证明它的用法是正当的,合法的。根据扎德的标准, 0 <β <α < 1, 一种三值逻辑的可能性是成立的。如果我们再加入一个中间值γ,区间将变为0 <β <γ<α < 1, 这样三值逻辑就可以扩充为四值逻辑, 其真值分别为: Truth( fA (x) ≥α) 、Falsity( fA (x) ≤β) 、Diaphor (β < fA (x) <γ) 以及Epiphor (γ≤fA (x) <α) 。如果α的值趋近于1而β的值趋近于0, 并且中间区间的集合不包含任何 其它 元素, 那么这就是一个传统的二值逻辑。如果隶属函数值介于β到γ的区间,就会产生暗示性隐喻;如果隶属函数值介于γ到α的区间,就会产生表征性隐喻。隶属函数会发生变化,因为很多隐喻由于不断的重复使用,固定了所指之间的关系,暗示性隐喻也就会变成表征性隐喻,如果太过普遍,则会变成死隐喻。由此可见,模糊集合论很好的解释了隐喻解读过程中本体集合与喻体集合的冲突,使得双方在合理的范围内找到交集,而这个交集内的元素属性很可能不是唯一的,这就造成了隐喻解读的多样性与模糊性[5]。 隐喻的本质是模糊了本体集合和喻体集合之间的界限,从而来寻找两个集合的契合点。由于模糊集合论设定了三个区间边界α、β和γ, 并且0 <β <γ <α < 1,这种四值逻辑不仅有助于消除隐喻所指不同集合之间所存在的矛盾,而且揭示出隐喻的模糊性实际是固有的,客观存在的。隐喻的模糊性主要是指其解读对语境的依赖性。无论从隐喻的编码,还是解码过程来看,不同的人,不同的时期,不同的场合,同一隐喻可以被赋予不同的含义。正是隐喻的这种模糊性开启了人类的想象空间,文学作品中好的隐喻总是余音绕梁,让人回味无穷。我们的生活离不开隐喻,而在隐喻所创造的模糊世界里,我们非但没有因为模糊而影响生活,反而借用隐喻的模糊性我们能够更好地认识世界,改造世界。 【参考文献】 [1]Earl R. MacCORMAC, METAPHORS AND FUZZY SET[J].Fuzzy sets and systems. 1982(7). [2] Set. Information and (8). [3]安军.隐喻的逻辑特征[J].哲学研究,2007(2). [4]苏联波.隐喻的模糊化认知机制研究[J].成都大学学报(社科版),2011(5). [5]束定芳.论隐喻的基本类型及句法和语义特征[J].外国语,2000(1). 猜你喜欢: 1. 高中数学论文题目大全 2. 关于数学文化的论文范文 3. 数学与哲学的论文 4. 人工智能逻辑推理论文 5. 数学学术论文范文大全 6. 数学论文离散数学
大胃王与王囡囡
语义学在大学英语英语词汇教学的运用 摘要: 词汇教学是英语教学的根基。大学英语学习已经进入高级阶段,传统的英语词汇教法很多时候已经无法解决学生在词汇学习中常出现的问题。本文结合语义学原理和教学实践,重点探究了语义学中并置理论、结构语义学、框架语义学、语义成分分析、格语法在大学英语词汇教学的运用,旨在提高大学英语词汇教学质量。 关键词: 语义学大学英语词汇教学运用语义学词汇教学质量 一、问题的提出 随着素质教育的开展和新课程改革的实施,我国大学英语教学有了新的突破,教学重点开始转向提高学生的英语应用能力,而词汇问题成为能否提高学生的英语应用能力的关键。传统的英语词汇教法仅仅要求学生识记单词的发音、拼写、汉语意思,这就导致学生学习的单词是孤立的,从而出现学生无法辨别近义词、词语搭配不当、英语“汉化”等现象。如何让学生正确快速地学会词汇,是每个大学英语教师应该关注的话题。本文针对学生在词汇学习中常出现的问题,结合笔者的教学经验和语义学理论,归纳出以下教学方法,旨在激发学生兴趣,提高大学英语词汇教学质量。 二、语义学在大学英语词汇教学的运用 (一)并置理论 并置理论是研究英语中某些词与另一些词之间的一种相关的关系。如mother(母亲)这个词在语言的应用中经常与nail varnish(指甲油),son(儿子),father(爸爸)等词一起使用,而很少和shave(刮胡子)连用。由此可见,并置理论不是指词汇的含义,而是指词与词之间的搭配关系。这种搭配关系是人们在长期使用语言的过程中的习惯用法。 然而目前大学生在学习英语中普遍出现词语搭配不当的问题,学生只记住了英语词汇的汉语意思,而不了解词语的习惯用法和潜在含义。例如:grow children(应为rear children)。此外学生由于受汉语思维干扰,往往按照汉语的习惯来进行词语搭配。如:I very like to play football.(应为I like to play football very much.) 因此,在大学英语词汇教学过程中,英语教师可以利用并置理论指导学生学习词语的合理搭配。在指导过程中,教师应向学生明确指出,词语的结伴关系具有可能性和限制性,词语的合理搭配会受很多因素制约。比如有时受语法决定,有时受词的语义特征制约,有时约定俗成,等等。这些需要教师根据具体情况具体教学。另外,教师还需要向学生特别指出词语的破格搭配。一些词语在一般情况下没有结伴关系,但在特殊情况下可以搭配。例如:lash the waves(白费力气)。除此之外,在习语中、文学作品中及新词语中常出现破格搭配,因此,学生需要注意平时积累。 (二)结构语义学 结构语义学主要研究“含蓄的”语义关系(Implicational Relations),这种理论更关注某些词或词组与另一些词或词组之间的“语义关系”,而不是像传统语义学那样只是孤立地研究词汇的语义现象,而忽略词汇之间的语义关系。含蓄的语义关系主要分为:下义关系(Hyponymy)、反义关系(Antonym)和相对关系(Relativeness)。 下义关系又叫语意内包,指个别概念的词内包。如上义词flower(花),下义词tulip(郁金香),violet(紫罗兰),rose(玫瑰)等。上义词是指同类概括词,下义词是相对具体的词。tulip,violet,rose在语义关系上是同类关系词。在大学英语词汇教学过程中,教师利用同类关系词理念可以帮助学生归纳整理同类单词,扩大词汇量;帮助学生利用同类概括词,使行文简练。通过对词汇下义关系的分析也可以避免学生词义混乱,锻炼学生的逻辑思维能力。 反义关系主要指:①词义矛盾或对立的词,例如male—female;dead—alive。②词义相反的词,例如:young—old;cold—hot。前者在语义上互相矛盾,不能同时并存,后者在语义上并不矛盾,它们表示性质相同、但程度不同的词。比如young—middle-young—old。在英语词汇教学中,引入反义关系可以帮助学生更清晰地理解单词涵义。平时在讲解单词时,教师普遍使用近义词进行解释,其实有些单词用近义词解释并不容易解释清楚,利用反义词进行解释,学生会更容易理解。例如,rude的反义词是polite(rude是新单词,学生不知道涵义,引导学生polite是rude的反义词,学生就很快明白新单词的基本意思了)。通过引导学生分清词义矛盾或对立的词、词义相反的词,教师可以帮助他们选用恰当的词语进行英语表达。另外,也可以利用反义词进行修饰文章,避免文章呆板。 相对关系又叫converses,存在于既相互对立又相互依存的一对对词之间。例如:husband—wife;above—below,两者是对立统一关系,语义学称此为“强相对关系”。还有一种相对关系存在于三个词之间,称之为“弱相对关系”。学生学习相对关系可以扩大词汇量,灵活运用词汇和句型。 因此,结构语义学的理论应用在大学英语词汇教学中,可以帮助学生准确理解和合理利用含蓄词汇,从而提高英语的表达和运用能力。 (三)框架语义学 框架语义学是一种独特的语义学理念,它属于认知语言学的一支。它能为英语词汇的教学提供一种全新的方法。词汇是大学生学习英语的一只拦路虎,尽管教师和学生花大量的精力学习词汇上,但结果往往并不理想。如何解决这一难题,框架语义学为我们提供了新的思路。简言之,框架语义学立足于人的认知,从不同的视角,将英语动词分类并放入相对应的框架中,然后针对每一个相对应的框架,将相近的名词根据其熟悉程度进行分类,进行分层次教学。至于其他词性也可参照名词和动词的做法进行学习。例如学习money这一单词,可以设置买卖交易框架,根据不同视角(sell,spend,buy等)归纳成买家和卖家两类,每个框架设有不同元素,可以将要学的单词纳入框架,根据熟悉程度进行系统性的有条理的学习。 (四)语义成分分析 在英语教学过程中,学生会因为辨别不清近义词词义而出现错误搭配。如何帮助学生识别近义词从而进行正确搭配?对于这个问题,教师可以在课堂中引入语义成分分析理论进行解决。利用语义成分分析理论研究语言学已经有很长一段历史了,它主要研究Conceptual-lexical Relations(概念上的词汇—语义关系),观点是任何词的“意义”都可以分解为某些不同的“语义成分”,这些“语义成分”又可以加以系统地分类。我们可以利用此理论来解释词语,例如:bachelor——[Human]+[Male]+[Unmarried]。这一理论也有利于帮助学生比较清楚地认识同义词之间的差别及搭配,从而做到在不同的语境中能正确而熟练地运用词汇。另外,语义成分分析法还有助于提高学生的翻译能力。在进行英汉对译的时候,“选词”不是随意的,而是要受语义成分限制的。准确得当的翻译应建立在认识词汇的正确涵义上。在目前的英语词汇教学上,如何使学生正确地掌握词汇是每一个英语教师所苦恼的,语义成分分析法为英语教师提供了一种方法,它可以帮助学生准确牢固地掌握单词,对于词汇教学有一定的意义,从而在一定程度上解决了教师的难题。 (五)格语法格语法是一种比较严谨、别出心裁的语义学理论。这种理论是1968年著名美国语言学家菲尔莫尔首先提出的,他概括出一个新的结论:每一种语言都有表深层结构的“语义格”(Semantic Case),每个语义格都与某个介词相联系。如Agent格与介词by相联系;Object格与介词with相联系;Instrument格与介词with相联系。菲尔莫尔还认为,从深层结构的角度来看,所有的noun phrases都是介词短语,不但可以在句子中移换位置,甚至可以省略。动词是英语句子中一个重要成分,菲尔莫尔认为在深层结构中,动词总是和某些语义格连用的,因此他主张对动词采取深层格框的方式来处理。这对语义研究有着重要的意义,我们可以通过这个方式把不同的动词加以分类。此外他还提出了三条检验规则来确定各个语义格在句子中的相互关系,探讨语义格在句子中的地位。在菲尔莫尔理论提出后,一些语义学家对此理论进行了不断的深入研究和完善。在英语词汇教学中,教师引入关于语义格与深层格框的理论,有助于学生从语义的角度去分析英语句法,正确应用某些动词。例如:hit——[+—AO(I)];enjoy——[+—EO],从中可以看出某一类动词与某些语义格的关系在深层格框中被明确地表示出来。如果学生掌握了动词的深层格框,就能学会动词的正确用法和句型。 三、结语有效的大学词汇教学离不开正确的语言学理论去指导,利用语义学相关理念进行词汇教学,可以更好地引导学生高效地学习词汇。以上笔者探讨了五种当代语义学理论在英语词汇教学中的应用。其实语义学在大学英语词汇教学中的作用不止这些,这仍需要英语教师在实际学习与工作中不断地探究,以提高我国英语教学水平。 [2]杜宇,李晶,结构语义学与英语词汇教学[J].中国科教创新导刊,2007,(476). [3]刘英莲.谈英语语用学与语义学的应用[J].辽宁工程技术大学学报(社会科学版),2004,VOL 6,(3). [4]钱德明,周庆芳.框架语义学对英语词汇的教与学的启示[J].苏州教育学院学报,2005,VOL 22,(2). [5]山东省大学英语教学研究论文集[M].石油大学出版社,1995.
康托尔是德国一名伟大的数学家,康托尔创立了集合论。下面是我带来的关于康托尔的集合论论文的内容,欢迎阅读参考!康托尔的集合论论文篇1:《基于集合论思想的人性》
同学们在 论文 答辩 后就要接受老师的 答辩 评语了,那么怎样的评语才算是合格的评语呢? 硕士论文 答辩评语篇一 优
文献综述在硕士、博士论文写作中占据着重要的地位,是论文中的一个重要章节。文献综述的好坏直接关系到论文的成功与否。 文献综述是文献综合评述的简称,指在全面搜集、阅
语言学毕业论文参考文献 语言学毕业论文的参考文献有哪些呢?语言是我国非常重要的文学,也是人与人交流的重要桥梁。下面是我分享的.语言学毕业论文的参考文献,欢迎阅读
摘要:香农于1948年10月宣布于《贝尔零碎技术学报》上的论文《A Mathematical Theory of Communication》(通讯的数学实际)