水墲月心时
基于能力提升与过程评价融合的机械设计基础课程设计教改探索“集成电路版图分析与设计”课程教改与探索师范专业认证视域下的现代文学教改研究浅谈新课程背景下初中语文教改的创新策略基于超星泛雅数据分析的个性化教改探索基于BOPPPS教学模型的国际商法教改研究工程教育背景下理论力学课程教改探索学科思维导图在药用植物学教改中的应用初探基于“互联网+”高科技技术的网络答辩教改探索“互联网+4A”式矿井通风工程教改探索建筑力学实训教学现状与教改措施探讨任务教学法在大学英语教改中的思考研究集成电路版图设计课程教改的几点想法新教改下高职公共英语课程改革模式研究新工科背景下EDA教学教改分析探讨研讨式教学在国际经济学课程中的教改实践“互联网+”时代下的综合英语教改路径探索论高校体育教改与大学生身体素质发展的关系基于BOPPPS教学模式的中医诊断学课程教改研究“信息化教改”视域下体育翻转课堂的改进路径三段式逆向教学设计的C语言课程教改创新实践基于成果导向教育(OBE)的“食品工程原理”课程教改探究公安教改进程中警务技能与战术关系分析高职英语教学中提升学生信息素养的教改措施大学英语口语能力现状分析及教改思路研究核心素养理念下高职院校课程教改的创新路径探析对“混凝土结构设计原理”过程性评价的教改研究
冰冷的火夫
日本美国HEV发展情况比较摘要:社会对环境和节能的重视有力地促进了混合动力电动车辆的发展。本文首先综述了日本、美国混合动力电动车的发展现状,介绍了它在日本、美国的发展情况,然后选取主要的商业化的和概念混合动力汽车,分别是本田Insight、丰田Prius、福特Prodigy、戴姆勒克莱斯勒ESX3、通用Precept,重点对比了它们的技术参数,最后展望了混合动力电动车的商业化前景及其发展趋势。关键词:混合动力 电动汽车 比较1 引言混合动力电动汽车(HEV)将内燃机、电动机与一定容量的蓄电池通过控制系统相组合,电动机可补充提供车辆起步、加速时所需转矩,又可以存储吸收内燃机富余功率和车辆制动能量,从而可大幅度降低油耗,减少污染物排放。混合动力汽车虽然没有实现零排放,但其动力性、经济性和排放等综合指标能满足当前苛刻要求,可缓解汽车需求与环境污染及石油短缺的矛盾。所以自从90年代以来,全球刮起了研究混合动力的风暴。日本丰田率先将混合动力车商品化,于1997年推出Prius,随后的时间里,多家日本汽车公司实现了多款混合动力的商品化。在美国,克林顿政府上台不久,为了开发新一代汽车,由美国政府促进,于1993年9月29日发起了新一代汽车伙伴计划即PNGV,目标是开发低油耗的混合动力汽车。然而该计划最终被废止,没有达到预订的2005年左右推出商品化的混合动力汽车的目标。2 日本混合电动汽车发展概况 政府的发展规划日本汽车保有量占全球第二位,由于人口密集,国土狭小,石油100%依赖进口。因此,日本对EV\HEV的研发十分重视。早在1992年,日本政府宣布将允许投放市场20万辆电动车的计划,但是没有实现;2001年7月,日本开展了“低公害车开发普及行动”,将EV\HEV列为重点开发的低公害汽车之列,并制定了专门的政策,以促进EV\HEV的普及应用;2002年提出从2005年开始大幅度限制尾气排放,制定了《新长期排放限制》的标准,准备用于2005年以后销售新车的一项排放法规;2002年2月26日,日本中央环境审议会大气环境领域的一个专门委员会(环境大臣的咨询机构)提出了一份将要纳入这项法规的尾气排放标准的咨询提案。这项提案的内容包括将颗粒状物质(PM)含量比现行标准的要求最大削减85%,将氮氧化物(NOx)削减50%等一些内容,该法规的实施将进一步推动EV\HEV的发展。按照目前的发展速度,预计在2010年将达到210万辆。 各大汽车公司所做的工作1)丰田丰田是全世界第一台正式批量生产的混合动力车的制造者,自从1997年开始,Prius就开始在日本销售,2000年起便在北美、欧洲及世界各地公开发售。目前,Prius已经在中国上市。到了2001年,丰田又在日本推出了Estima混合动力小货车、使用弱混合动力的皇冠豪华小轿车和Dyna混合动力轻型货车。丰田商业化的车型已经达到5款,表1是丰田主要销售的混合动力车型。年11月30日,丰田汽车正式宣布,丰田混合动力汽车累计已经超过了50万台,到今年十月末,全球已经接近销售了万台。表2是丰田混合动力车型累积销售情况:为了在实现低排放的前提下,提高车辆的动力性,在2003年,丰田汽车把新一代的混合动力系统Hybrid Synergy Drive引入到了第二代的Prius上面。在2005年,他把这套系统的使用范围扩展到了对动力性能要求更高的SUV车型上——雷克萨斯的RX400h(日本名为Harrier Hybrid)和Highlander Hybrid(日本名为Kluger Hybrid)。2)本田在混合动力车方面,目前本田公司主要销售的两个品牌,一个是1999年推出的“INSIGHT”,一个是2001年推出的“CIVIC”。本田还在混合动力车的开发上,通过研究新型发动机、镍氢蓄电池等追求动力高效化;通过开发新型轻质铝车身、树脂油箱等谋求车辆的轻型化,使汽车达到每公升汽油可行驶35公里的世界最高水平,并且使汽车尾气排放达到世界最严格要求的标准。3 美国混合电动汽车发展概况政府的发展规划1973年OPEC组织对西方国家石油禁运给美国政府敲响了警钟。1976年卡特总统签署EV/HEV研究开发和示范法案,授权美国能源部执行和管理EV/HEV研究计划,但是直到九十年代初电动车的研究在美国才真正开始。1990年10月布什总统签署清洁空气法严格规定了汽车排放的标准,同月加州政府也有了新的规定,即要求汽车制造商在加州销售的车辆中百分之二必须是零排放车辆,而当时只有纯电动汽车才可能达到零排放车辆的要求。1991年1月美国先进电池联合会成立,成员包括美国三大汽车制造商(福特、通用和克莱斯勒)以及美国电力研究院、美国能源部,正式开始了政府与企业联合开发电动汽车的新时期。1992年麻省州和纽约州正式采用了加州零排放车规定,同年布什总统正式签署能源政策法案,有关EV/HEV研发成为此法案的重要组成部分。根据此法案,联邦政府将第一笔经费拨给国防部从事EV/HEV的研发和示范。1993年,美国克林顿政府推出了新一代汽车伙伴计划即PNGV,要求联邦政府部门从1993到1995年度大量购买包括EV/HEV的替代燃油车。PNGV制订了10年开发计划,目标是80mpg(约3L/100km)的低油耗汽车。2002年1月9日,10年计划尚未结束,美国能源部部长斯潘塞·阿伯拉罕在各大汽车公司首脑参加的会议上宣布,根据总统布什的国家能源计划,降低美国对进口石油依赖性,决定成立一个新的汽车研究项目,叫做自由车(FreedomCAR),该项目的长期目标是高效、价廉、无污染。研究先进、高效的燃料电池技术,用氢燃料作动力,不产生任何污染。改项目继续对电动汽车进行专项研究,但是重点是发展氢燃料电池电动车。 PNGV概念车按照PNGV的时间表,在1999年以前为浓缩并集中技术目标阶段,1999~2001为生产概念车阶段,2001~2005年为生产性样车阶段。按照上述开发时间表,经过各参与单位的6年努力,PNGV的中期目标已经实现。在2000年底特律国际汽车展上福特和通用汽车公司展示了其柴油复合动力概念车,同年2月22日,戴姆勒克莱斯勒在华盛顿国家博物馆公布了其PNGV复合动力概念车。PNGV计划在2002年被终止,原因是80MPG的目标很高,而研制的新车在成本上并未取得很好的成果,不能满足用户在价格上的要求,也就是说,在短时期内不具有市场价值。更重要的是,PNGV仍然局限于用石油作为基本能源。因此要求新项目在这方面有新的突破,将着眼于新一代汽车能源,而不囿于现有技术和当前燃料资源。但是PNGV起到了全球EV/HEV技术开发领头人的作用,从其建立和执行情况来看,新一代汽车已经成为跨国汽车公司和工业国家战略发展的重要内容。本文的一下部分,将对这三款HEV和Prius、Insight进行详细的对比分析。4 日美主要混合电动汽车对比基本参数对比图1是日美5款HEV的外形图,它们分别是:①日本本田公司推出的Insight;②日本丰田公司推出的Prius;③福特Prodigy;④戴姆勒克莱斯勒ESX3;⑤通用Precept。①②是已经商业化的HEV,尤其是Prius,目前在全球的总销量已经突破30万辆。③④⑤是PNGV计划的HEV概念车,在本文的前面部分已经有所介绍。这五种车型,分别代表了日本和美国的HEV发展最高的技术,拿它们来进行对比,是最具有代表性的。表3列出了这5款HEV的基本参数:注:CAFE工况下的燃油经济性是换算过的,是45%的HWY工况和55%的CITY工况之和,其中Precept的燃油经济性最好,达到了80MPG(约3L/100km)。 燃油经济性的对比分析电机能量使用比率=纯电动行驶所消耗的电能/电机和内燃机共同工作消耗的能量,也可以把电机能量使用比率理解成纯电动比例。图2所示的是它们的电机能量使用比率,再对比图3,可以发现HEV的然油经济性与纯电动比例之间没有直接关系。本田Insight,戴姆勒—克莱斯勒ESX3和福特Prodigy纯电动比例在23%以下,所以称之为轻混合动力电动汽车(MHEV)。而丰田Prius和通用Precept则超过了39%,所以称他们为重混合动力电动汽车(FHEV)。图3比较了五款HEV的燃油经济性,采用的是单位质量在单位里程上消耗的能量(UCE)单位是kj/km/kg。此外在测试燃油经济性时,每辆车外加300磅的负荷。所以这样测试出的UCE能更好的反映HEV在载重时的经济性。图2和图3也大致反映了UCE和纯电动比例之间的关系。若把这五种车分为两类:汽油车和柴油车,则他们的燃油经济性和纯电动比例有着正比的关系。 与参照车型燃油经济性的比较拿这五种HEV和具有相同动力性传统内燃机汽车(CV)相比较,分析他们各自所获得的燃油经济性。选取下列汽车作为对比的基准:丰田升的Corolla,升的本田CivicHX和升的福特Taurus。表4反映了它们所获得更多好燃油经济性。与CV比较,HEV从以下三个方面提高了燃油经济性:a)更有效地转换燃料能量(如动力系统改进和改革,内燃机始终工作在中等负荷状态);b)降低汽车对能源的需求(如轻量化、降低各种阻力);c)采取制动蓄能的方法回收能量。在表4中,HEV与CV相比较,Prius和Insight获得的经济性低于100%,PNGV概念车获得的经济性都超过了100%,尤其是Precept更是达到了%。PNGV概念车比Prius和Insight获得了更好的燃油经济性,是因为PNGV概念车目标是追求最高的燃油经济性,不必考虑成本的限制,更多的采用了新型复合材料,更大程度上减轻了车重,采用了电喷柴油发动机,更多的提高了燃油经济性。而Prius和Insight是商业化的HEV,需要综合考虑燃油经济性和成本。所以单从经济性来说,PNGV的概念车要更好。5 结束语混合动力技术的先进性和实现的现实性,节能、环保效果明显,采用混合动力汽车是现阶段解决环保和能源问题最为切实可行的方案。但是,由于混合动力汽车是在牺牲了部分环保利益的基础上,可以满足目前人们对汽车环保的基本要求,在结构上两套系统电池/电机和内燃机同时安装于本来只装一套系统的汽车上,不仅加大了汽车本身的重量,也提高了对整体工艺及控制等方面的要求。除了和纯电动汽车(BEV)一样受目前蓄电池技术的限制之外,混合动力的能量来源仍然是石油,这决定了混合动力不是电动汽车发展的最终形式。美国PNGV计划的废止和FreedomCAR计划的重点是发展燃料电池汽车正说明了这一点。但是,目前日本的几大公司的混合动力汽车的热销说明,混合动力汽车是传统汽车时代向氢燃料电池汽车时代的过渡车型技术,虽然不是长远之计,但据估计,仍有20年以上的较长市场周期。可以充分利用现有内燃汽车生产能力,推动传统汽车工业的改造发展。总之,混合动力汽车介于传统汽车和纯电动汽车、燃料电池汽车之间,是一种承前启后的,在经济和技术方面都趋于成熟的电动汽车产品。A compare for HEV between America and JapanAbstract: People have paid more attentions to environment pollution and energy resource saving. This paper gives a brief review for Hybrid Electric Vehicles(HEV)development of current situation between America and Japan. Then, we chose two commercially available gasoline hybrid cars (Toyota Prius and Honda Insight) and three PNGV diesel hybrid prototypes (Ford Prodigy, GM Precept, and DaimlerChrysler ESX3) and compared there characteristics. Finally we discussed and predicted the future of HEV in business : HEV EV Compare[参考文献]1 Antoni Szumanowski原著、陈清泉、孙逢春编译,混合电动车辆基础,北京理工大学出版社,20012 陈小复,PNGV及其概念车,世界汽车,2000年第8期3 殷德双、陈潼,丰田Prius混合动力电动汽车技术特征分析,上海汽车, 陈清泉,电动车的现状和趋势,机械制造与自动化, Feng An、 Anant Vyas、John Anderson and Danilo Santini,Evaluating Commercial and Prototype HEVs,SAE paper,–16076 Anthony G. Grabowski、Arun K. Jaura,Ford's PRODIGY Hybrid Electric Vehicle Powertrain Weight Reduction Actions,SAE paper,–1598
安妮果果33
油新华1 李晓2 何刚1
(1.北京城建集团有限责任公司 北京 100044
2.中国科学院地质与地球物理研究所 北京 100029)
摘要 土石混合体是一种非均质、不连续体,针对其结构特点,分析了其尺寸效应,提出了土石混合体的随机结构模型。对其中砾石块体的空间位置、大小、方位三个随机变量的实测统计、分布函数、生成方法等进行了深入的研究。并利用随机模拟方法提出了一套随机结构模型的自动生成技术,最后给出了两个随机结构模型的例子。
关键词 土石混合体 随机结构模型 自动生成技术
岩土工程从定性到定量转化的重要标志是岩土介质模型的建立,而模型的合理有效性是保证工程定量分析结果精确可靠的基本前提。土石混合体是一种非均质、不连续体,其力学性质受控于土石混合体的内部结构[1~4]。土石混合体力学行为所显示的不确定性、不规则性和模糊性是其结构复杂性的具体反映。因而,反映并确定岩土体结构的非线性特征已成为突破连续介质力学模型的束缚、发展全新思维的岩土力学理论与技术的关键。一种岩土力学的分析方法能否成功地解决实际岩土工程问题将在很大程度上取决于它如何真实地反映出工程岩体所具有的这些特性。本文在土石混合体实测剖面的基础上,利用图像处理技术和有限差分网格的自动生成技术对其中砾石块体的空间位置、大小、方位三个随机变量的实测统计、分布函数、生成方法等方面进行了深入的研究,并利用随机模拟方法提出了一套随机结构模型的自动生成技术,最后给出了几个随机结构模型的例子。
1 土石混合体的力学性质分析
土石混合体由于含有不同大小、不同种类、不同数量的砾石块体而具有典型的非均质、非连续性,在力学性质上表现为强烈的各向异性。
在实际工程中,岩土体的非均匀性不仅仅表现为物质成分分布的非均匀性,而且更主要地表现为岩土体结构的非均匀性[5,6]。土石混合体可以认为是复合型结构体,它可以包含强度相对较低的粘土或砂土充填物以及强度相对较高的砾石块体,这决定了它物质组成上的非均质性。同时所含的石块可以具有各种各样的空间结构和方向,尺寸也相差很大,这决定了它结构上的非均质性。
正是由于土石混合体组成物质上的非均匀性、结构的非均匀性,从而使其物理-力学性质表现为明显的非均匀性、各向异性和不连续性和应力重分布的复杂性[7]。
确定这种物质的力学性质,传统的方法效果甚微:惯用的现场和实验室试验相对于大面积岩土体来说,不能提供研究所具有的代表性条件。为减少这些不足,文中采取的办法是对强度较大的砾石块体和强度较小的粘砂土充填物分别赋予不同的材料强度参数,以解决物质组成上的非均质性;同时用随机变量的形式来模拟砾石夹杂物的百分含量、尺寸、形状和方向,以解决土石混合体结构上的非均质性。
在土石混合体中,由于包含硬度大小不同的两种或多种物质,而使得在受力变形时,应力和位移表现为不连续,主要体现在两种不同物质的交界面上,砾石块体和土体单元之间可以拉裂和滑移。本文采取的办法是用Interface单元来模拟这一界面,结果证明它能很好地反映位移和应力的不连续。
岩土体材料的均匀程度及连续性,同使用的研究尺度和所考察的范围有关[8,9]。在一定尺度内严重碎裂的块体在另一尺度内可以是大块体的组合。改变研究的尺寸,岩体的非均质、非连续性和各向异性都将发生变化,因此采用的力学方法也随之变化。
土石混合体中含有的砾石块体有大有小,分布极不均匀,但在实际研究中,必须保证其最大粒径不能大于试样尺寸的1/5,对于特殊的大颗粒应该单独进行分析,以研究它的存在对整个应力场的影响;对于异常小的颗粒则不予考虑。
通过以上的分析,可知在模型的建立时必须坚持以下一些原则:
(1)在土石混合体的模型中,假定只包含两种强度不同的材料,且这两种材料分别是均质、连续的。
(2)在数值模拟中,应尽可能考虑“夹杂物-充填物”之间的接触界面作用,以模拟土石混合体的非连续性。
(3)研究的区域尺寸至少应该大于最大夹杂物特征尺寸的4~5倍,这样才能得到土石混合体的代表性性质。
(4)数值模拟可根据平面变形方式进行,忽略试件的体应力状态,试验证明其结果实际上等于或稍小于体应力下的实验中强度和变形的特性。Christensen于1982年提出的复合材料理论证实了这一想法。
2 基于随机分布的随机结构模型的自动生成技术
蒙特-卡洛(Monte-Carlo)法又称随机模拟方法或统计计算方法,是一种由统计抽样理论所确定的随机变量在计算机上模拟的数值计算方法[10~12]。它的应用非常广泛,在岩土工程中,用Monte-Carlo法进行节理裂隙的模拟引起了广泛的注意,在不少工程中得到了实际应用;将Monte-Carlo法与有限元等数值方法相结合而发展起来的随机有限元法、随机边界元法等方法正在得到进一步发展。
本文利用Monte-Carlo法来模拟土石混合体中砾石的大小、方位和空间分布,以建立基于随机分布的土石混合体随机结构模型。其基本思路是:根据对土石混合体的野外地质调查以及对典型试样的粒组分析和含石量统计,同时为了研究的方便,假定砾石在土石混合体中的空间位置服从均匀分布,砾石的大小及方位服从对数正态分布。首先,在某一研究区域中,均匀产生一位置点;然后,给其赋予大小和方位两个随机地质参数,由这些属性参数并利用AutoCAD或Ansys的绘图功能,即可建立土石混合体的随机结构模型。
在土石混合体随机结构模型的创建中,要使用砾石块体的空间位置、块体的大小、块体的方位三个随机变量。
块体的空间位置
从总体上看,块体在试样中是均匀随机分布的,如图1所示。由于是平面问题,所以需要产生一个随机分布的数对(x,y)。这是一个二维随机变量,x、y分别是点的X、Y坐标,由实际情况可知,随机变量x、y是统计独立的,其联合概率密度函数为:
土石混合体
式中:fx(x)为x的边缘分布密度函数;fy(y)为y的边缘分布密度函数。
这时可以运用单随机变量的情形,彼此分开和相互独立地生成每一个随机变量的随机数。在具体应用中,可以利用反函数法生成两个属于不同区间的随机序列,即
土石混合体
土石混合体
由此可以得到一个随机数对(xi,yi),即在如图1所示的区域内产生一个点。
图1 均匀随机分布的空间布置
块体的大小
土石混合体中砾石块体的形状、大小随其种类的不同而不同,如滑坡堆积形成的土石混合体中的块体多为圆形或亚圆形,大小不一,而崩塌堆积形成的土石混合体中块体多为棱角形。关于形状,本文考虑了三角形和圆形两种极限情况。而对于块体的大小,作者统计了白衣庵滑坡地区两个试样中砾石块体的粒径,同时也利用数码照相的方法统计了试样中块体的面积大小和平均粒径的大小,其直方图见图2至图5。
图2 人工统计的试样1 粒径分布直方图
图3 人工统计的试样2 粒径分布直方图
图中横坐标分别代表不同的粒径组别。例如,在图2中,组别1:小于1cm;组别2:1~2cm;组别3:2~4cm;组别4:4~6cm;组别5:6~8cm;组别6:8~10cm;组别7:10~12cm;组别8:大于12cm。由图中可以看出粒径的大小基本上符合对数正态分布。对数正态分布的概率密度函数为:
图4 自动统计的数值试样的平均粒径直方图
图5 自动统计的数值试样的面积分布直方图
土石混合体
对数正态分布的密度函数f(x)是偏正态的,如图6所示。由图可知,对数正态分布的随机变量x均在正值域取值,所以在工程中相当多的随机变量,如土的粘聚力、内摩擦角等都服从对数正态分布[12]。
图6 对数正态分布的概率密度函数
对于这种随机变量,一般采用坐标变换的方法来产生。
设r1、r2是两个相互独立的在[0,1]上均匀分布的随机数,做变换为
土石混合体
则η1,η2是两个相互独立、服从标准正态分布的随机数。由正态分布和标准正态分布的关系,可以方便地求出具有均值μx标准差σx的非标准正态分布的随机数x1、x2:
土石混合体
由正态分布与对数正态分布的关系,得对数正态分布的随机数:
土石混合体
块体的方位
块体的方位是指块体的优势方向,对于圆形块体来说不存在这一问题;而对于三角形特别是扁平的多边形来说,则具有非常重要的意义,因为其方位不同,变形破坏机理也不同,试样的强度性质相差很大。本次计算,只考虑块体为等边三角形的情况,其方位可以如图7定义。
图7 三角形块体的方位角示意图
三角形的三个顶点分别为1,2,3,以1 点为例,将1点和原点的连线与 X 轴的夹角定义为三角形的方位角 α。因为是等边三角形,故0<α<120 °。
对于块体的方位,可以针对某一个剖面进行现场测量,或者利用数码照相的方法进行自动统计。这一部分的工作暂时没有做,但是根据前人的经验[8]可知块体的方位角一般也服从对数正态分布。对于某一类型或某一地区的土石混合体来说,其块体方位角都有一个优势值,即均值。然后给出一个方差,根据上节的方法即可产生一个服从对数正态分布的随机变量α。
3 随机结构模型的生成
有了上述三个随机变量,就可以编程来生成土石混合体的随机结构模型。首先在一定的区域内随机生成一个均匀分布的随机点,作为圆形的圆心或三角形的形心(因为是等边三角形故也为重心)。然后给这个点赋予大小和方位两个随机参数变量li,αi,当然若为圆形则只有一个参数li。最后,由这两个参数,即可画出一个三角形或圆形。具体方法如下:
(1)对于圆形,因为有圆心和半径(表示大小的随机变量li),就可以利用Fortran语言或ANSYS或AutoCAD中的绘图命令来产生一个圆,如图8所示。
(2)对于三角形,先利用形心、大小和方位产生点1,根据1点和2点仅相差120°,产生点2,同理产生点3。连接1和2,2和3,3和1,即可得出一个随机产生的等边三角形,如图9所示。
图8 随机圆的生成示意图
图9 随机三角形的生成示意图
产生一个圆或三角形以后,就可以根据同样的方法生成一系列的圆或三角形,因为产生这些实体的三个随机变量是相互独立的,所以它们之间也是相互独立的。在这个过程中,有一点需要特别指出,即在产生某一个实体的时候,要先判断一下这个实体是否和其他已经生成的实体相交,如果相交则舍去,重新生成下一个。对于圆形,判断两个圆心之间的距离是否大于两个圆半径之和即可(图10)。而对于三角形,则有三种情况:点点相对(图11)、点边相对(图12)、边边相对(图13)。为了简便起见,只考虑最不利的第一种情况(图11),即判断两形心之间的距离是否大于等于两三角形外接圆半径之和。另外在三角形和圆形混杂的情况下,也只判断较不利的方式,即圆和三角形的顶点相对,这样可判断三角形形心和圆的圆心之间的距离大于等于三角形外接圆半径和圆的半径之和。
图10 两圆相交判断示意图
图11 三角形点点相对相交判断示意图
图12 三角形点边相对相交判断示意图
图13 三角形边边相对相交判断示意图
利用上述方法生成的土石混合体随机结构模型,可以导入Ansys,从而提取很多有用的信息:面的信息、线的信息、点的信息。由这些信息,可以统计出以下量化指标:砾石块体的面积、砾石块体的周长、土石混合体的含石率、砾石的面周比、砾石块体的长细比。这样就建立了能进行数值计算的土石混合体随机结构模型。利用这种模型,可以系统地研究含石量、块体形状、块体分布形式对土石混合体强度性质以及变形破坏形式的影响,详见文献[4]。
4 土石混合体随机结构模型的实例
在以上分析的基础上,作者编制了一套相应的Fortran语言程序,以产生不同的随机结构模型。下面给出了两个较为复杂的模型:①圆形、三角形块体混合分布,大小、方位都服从对数正态分布(图14);②圆形、三角形、四边形块体混合分布,大小和方位均服从对数正态分布(图15)。
致谢 在本文的写作过程中,得到了许多现场和科研机构工作人员的大力协助,在此向他们特别是中国水文地质工程地质勘查院的殷跃平总工,中国科学院地质与地球物理研究所的张年学研究员、曲永新研究员,北京城建集团的贺长俊教授级高工表示衷心的感谢!
图14 随机结构模型(1)
图15 随机结构模型(2)
参考文献
[1]油新华等.土石混合体的分类建议.工程地质学报,2002,,~452
[2]油新华等.土石混合体边坡的细观处理技术.水文地质工程地质,,,总89期:18~21
[3]油新华,汤劲松.土石混合体野外水平推剪试验研究.岩石力学与工程学报,2002,,:1537~1540
[4]油新华.土石混合体的随机结构模型及其应用研究.北方交通大学博士学位论文,
[5]伍法权.统计岩体力学基础.武汉:中国地质大学出版社,1993
[6]谷德振.岩体工程地质力学基础.北京:科学出版社,1979
[7]周维垣.高等岩石力学.北京:水利电力出版社,1990
[8]尤明庆.岩石试样的强度及变形破坏过程.北京:地质出版社,2000
[9]李宏,朱浮声,王泳嘉.岩体(石)的损伤、尺寸效应和不均匀性.见:中国岩石力学与工程学会第四次学术大会论文集.北京:中国科学技术出版社,1996
[10]王家臣.边坡工程随机分析原理.北京:煤炭工业出版社,1996
[11]祝玉学.边坡可靠性分析.北京:冶金工业出版社,1993
[12]黄运飞,冯静.计算工程地质学.北京:兵器工业出版社,1992
基于能力提升与过程评价融合的机械设计基础课程设计教改探索“集成电路版图分析与设计”课程教改与探索师范专业认证视域下的现代文学教改研究浅谈新课程背景下初中语文教改
茶文化 名字: 学号: 中国经历了几千年,中国文化也发展了几千年了。中国文化博大精深,源远流长,自古以来就以其独特的韵味吸引海内外的各界人士。
去买辆雷克萨斯LS600,然后问他们拿技术标准,或者干脆让他们写份《论混合动力》给你
混合动力电动汽车(Hybrid Electric Vehicle)是传统燃油汽车和纯电动汽车相结合的新车型,具有燃油汽车的动力性能和较低的排放特性,是当前解决节
1《中华人民共和国企业国有资产法》2《企业国有资产监督管理暂行条例》3《关于规范国有企业改制工作的意见》4《关于进一步规范国有企业改制工作实施意见的通知》5《关