狂想妄想不想
多元线性回归 是 简单线性回归 的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。
例如,对于三个预测变量(x),y的预测由以下等式表示: y = b0 + b1*x1 + b2*x2 + b3*x3
回归贝塔系数测量每个预测变量与结果之间的关联。“ b_j”可以解释为“ x_j”每增加一个单位对y的平均影响,同时保持所有其他预测变量不变。
在本节中,依然使用 datarium 包中的 marketing 数据集,我们将建立一个多元回归模型,根据在三种广告媒体(youtube,facebook和报纸)上投入的预算来预测销售。计算公式如下: sales = b0 + b1*youtube + b2*facebook + b3*newspaper
您可以如下计算R中的多个回归模型系数:
请注意,如果您的数据中包含许多预测变量,则可以使用 ~. 以下命令将模型中的所有可用变量简单地包括在内:
从上面的输出中,系数表显示β系数估计值及其显着性水平。列为:
如前所述,您可以使用R函数轻松进行预测 predict() :
在使用模型进行预测之前,您需要评估模型的统计显着性。通过显示模型的统计摘要,可以轻松地进行检查。
显示模型的统计摘要,如下所示:
摘要输出显示6个组件,包括:
解释多元回归分析的第一步是在模型摘要的底部检查F统计量和关联的p值。
在我们的示例中,可以看出F统计量的p值<,这是非常重要的。这意味着 至少一个预测变量与结果变量显着相关 。
要查看哪些预测变量很重要,您可以检查系数表,该表显示了回归beta系数和相关的t统计p值的估计。
对于给定的预测变量,t统计量评估预测变量和结果变量之间是否存在显着关联,即,预测变量的beta系数是否显着不同于零。
可以看出,youtube和facebook广告预算的变化与销售的变化显着相关,而报纸预算的变化与销售却没有显着相关。
对于给定的预测变量,系数(b)可以解释为预测变量增加一个单位,同时保持所有其他预测变量固定的对y的平均影响。
例如,对于固定数量的youtube和报纸广告预算,在Facebook广告上花费额外的1000美元,平均可以使销售额增加大约 * 1000 = 189个销售单位。
youtube系数表明,在所有其他预测变量保持不变的情况下,youtube广告预算每增加1000美元,我们平均可以预期增加 * 1000 = 45个销售单位。
我们发现报纸在多元回归模型中并不重要。这意味着,对于固定数量的youtube和报纸广告预算,报纸广告预算的变化不会显着影响销售单位。
由于报纸变量不重要,因此可以 将其从模型中删除 ,以提高模型精度:
最后,我们的模型公式可以写成如下:。 sales = *youtube + *facebook
一旦确定至少一个预测变量与结果显着相关,就应该通过检查模型对数据的拟合程度来继续诊断。此过程也称为拟合优度
可以使用以下三个数量来评估线性回归拟合的整体质量,这些数量显示在模型摘要中:
与预测误差相对应的RSE(或模型 sigma )大致代表模型观察到的结果值和预测值之间的平均差。RSE越低,模型就越适合我们的数据。
将RSE除以结果变量的平均值将为您提供预测误差率,该误差率应尽可能小。
在我们的示例中,仅使用youtube和facebook预测变量,RSE = ,这意味着观察到的销售值与预测值的平均偏差约为个单位。
这对应于 / mean( $ sales)= / = 13%的错误率,这很低。
R平方(R2)的范围是0到1,代表结果变量中的变化比例,可以用模型预测变量来解释。
对于简单的线性回归,R2是结果与预测变量之间的皮尔森相关系数的平方。在多元线性回归中,R2表示观察到的结果值与预测值之间的相关系数。
R2衡量模型拟合数据的程度。R2越高,模型越好。然而,R2的一个问题是,即使将更多变量添加到模型中,R2总是会增加,即使这些变量与结果之间的关联性很小(James等,2014)。解决方案是通过考虑预测变量的数量来调整R2。
摘要输出中“已调整的R平方”值中的调整是对预测模型中包含的x变量数量的校正。
因此,您应该主要考虑调整后的R平方,对于更多数量的预测变量,它是受罚的R2。
在我们的示例中,调整后的R2为,这很好。
回想一下,F统计量给出了模型的整体重要性。它评估至少一个预测变量是否具有非零系数。
在简单的线性回归中,此检验并不是真正有趣的事情,因为它只是复制了系数表中可用的t检验给出的信息。
一旦我们开始在多元线性回归中使用多个预测变量,F统计量就变得更加重要。
大的F统计量将对应于统计上显着的p值(p <)。在我们的示例中,F统计量644产生的p值为,这是非常重要的。
我们将使用测试数据进行预测,以评估回归模型的性能。
步骤如下:
从上面的输出中,R2为 ,这意味着观察到的结果值与预测的结果值高度相关,这非常好。
预测误差RMSE为 ,表示误差率为 / mean(testData $ sales) = = % ,这很好。
本章介绍了线性回归的基础,并提供了R中用于计算简单和多个线性回归模型的实例。我们还描述了如何评估模型的性能以进行预测。
寻找梦想之旅
R语言泊松Poisson回归模型分析案例
这个问题涉及马蹄蟹研究的数据。研究中的每只雌性马蹄蟹都有一只雄性螃蟹贴在她的巢穴中。这项研究调查了影响雌蟹是否有其他男性居住在她附近的因素。被认为影响这一点的解释变量包括雌蟹的颜色(C),脊椎状况(S),体重(Wt)和甲壳宽度(W)。
我们将首先拟合仅具有一个自变量:宽度(W)的泊松回归模型
估计的模型是:$ log( hat { mu_i})$ = + ilog(μi^) = - +
估计的β= 的ASE为,这是小的,并且该斜率在z值为及其低p值的情况下在统计学上是显着的。
如果我们看一下W对Sa的散点图(见下文),我们可能会怀疑一些异常值
您可以考虑其他类型的残差,影响度量(如我们在线性回归中看到的)以及残差图。
以下是运行R代码其他部分的输出的一部分:
从上面的输出中,我们可以看到预测计数(“拟合”)和线性预测变量的值,即预期计数的对数值。
我们也可以看到,尽管预测是有意义的,但模型并不适合。考虑到剩余偏差统计值为和171 df,p值为零,值/ DF = / 171 = 远大于1,因此该模型不适合。缺乏适合可能是由于缺少数据,协变量或过度分散。
更改模型
在上述模型中,我们检测到一个潜在的过分散问题,因为比例因子,例如残差偏差的值/ DF远大于1。
回想一下,过度分散的原因之一是异质性,其中每个协变量组合中的主体仍然差异很大。如果是这样的话,是否违背了Poisson回归模型的泊松模型的假设?
上述R程序的输出:
在这个模型中,随机分量在响应具有相同均值和方差的情况下不再具有泊松分布。根据给定的估计值(例如Pearson X 2 = ),随机分量的变化(响应)大约是平均值的三倍。
除了过度分散之外,如何忽略其他解释变量?我们可以通过添加其他变量来提高拟合度吗?
我们来比较一下这个输出和只有“W”作为预测的模型。我们将“虚拟变量”引入到模型中,以表示具有4级的颜色变量,其中4级作为参考级别。
此外,如果您运行anova(),从下面的输出中我们可以看到,在考虑宽度后,颜色几乎没有统计上显着的预测因子。
此模型是否适合数据更好,是否适合过度分散?
R代码的这部分做以下更改:
将此输出的部分与上面的输出相比较,我们将颜色用作分类预测器。我们这样做只是为了记住同一个变量的不同编码会给你不同的拟合和估计值。
现在估计的模型是什么?$ log { hat { mu_i}} $ = + - 。logμi^ = + - 。
由于添加协变量没有帮助,过度分散似乎是由于异质性。我们可以用这些数据做些什么吗?
数据分组
我们考虑按宽度分组数据,然后拟合泊松回归模型。这里是按W排序的数据。
数据已分成8个区间,如下面的(分组)数据所示
请注意,“NumCases”是位于特定间隔内的雌性螃蟹的数量,这些雌性螃蟹的宽度由后面限定。“AverWt”是该分组内的平均背宽,“AverSa”是男性卫星总数除以组内的雌蟹总数,“SDSa”和“VarSa”是标准偏差,即“AverSa”的变化。
更改模型
我们还创建了一个变量lcases = log(个案),其中记录了个案数量的对数。这是输出。
模型现在比以前更好还是更差?它显然更适合。例如,剩余偏差统计值的值/ DF现在是。
残差分析也显示了良好的拟合度。
我们来比较下图中的观察值和拟合值(预测值):
R中的最后两个陈述用于证明我们可以用速率数据的身份链接来拟合泊松回归模型。请注意,该模型不适合分组数据,因为与先前的模型相比,残差偏差统计的值/ DF约为。
蔓陀花主
原文: R语言之生信⑦Cox比例风险模型(单因素) ====================================== 在前一章(TCGA生存分析)中,我们描述了生存分析的基本概念以及分析和总结生存数据的方法,包括:1.危险和生存功能的定义 2.为不同患者群构建Kaplan-Meier生存曲线用于比较两条或更多条生存曲线的logrank检验 但是上述方法--Kaplan-Meier曲线和logrank测试 - 是单变量分析的例子。他们根据调查中的一个因素来描述生存,但忽略了任何其他因素的影响。 此外,Kaplan-Meier曲线和logrank检验仅在预测变量是分类时才有用(例如:治疗A与治疗B;男性与女性)。它们不适用于基因表达,体重或年龄等定量预测因子。 另一种方法是Cox比例风险回归分析,它适用于定量预测变量和分类变量。此外,Cox回归模型扩展了生存分析方法,以同时评估几种风险因素对生存时间的影响。 在临床研究中,存在许多情况,其中几个已知量(称为协变量)可能影响患者预后。 例如,假设比较两组患者:那些患者和没有特定基因型的患者。如果其中一组也包含较老的个体,则存活率的任何差异可归因于基因型或年龄或两者。因此,在研究与任何一个因素相关的生存时,通常需要调整其他因素的影响。 cox比例风险模型是用于对生存分析数据建模的最重要方法之一。该模型的目的是同时评估几个因素对生存的影响。换句话说,它允许我们检查特定因素如何影响特定时间点发生的特定事件(例如,感染,死亡)的发生率。该比率通常称为危险率。预测变量(或因子)通常在生存分析文献中称为协变量。 要一次将单变量coxph函数应用于多个协变量,请键入: 上面的输出显示了回归β系数,效应大小(作为风险比给出)和每个变量相对于总体生存的统计显着性。每个因素都通过单独的单变量Cox回归来评估。
多元线性回归 是 简单线性回归 的扩展,用于基于多个不同的预测变量(x)预测结果变量(y)。 例如,对于三个预测变量(x),y的预测由以下等式表示:
比如 Horticulture Research 中的论文 Comparative analysis of long noncoding RNAs in a
以AR(3)-GARCH(2,1)模型为例:首先在主窗口输入LS RR RR(-1) (-2) (-3)得出Variable Coefficient Std.
是的,明年一月股票价格属于逻辑回归问题。逻辑回归这个模型很神奇,虽然它的本质也是回归,但是它是一个分类模型,并且它的名字当中又包含”回归“两个字,未免让人觉得莫
不知道你要什么类型的 这些是关于葡萄酒健康功效的 希望对你有帮助美国科学家:果蔬红酒中某成分能杀血癌细胞 美国科学家日前公布的一项研究报告显示,