• 回答数

    3

  • 浏览数

    245

心菲殿下
首页 > 学术论文 > 小麦遗传物种论文参考文献

3个回答 默认排序
  • 默认排序
  • 按时间排序

小花lily

已采纳

首页智能降重人工降重论文查重登录注册首页 > 正文水稻雄蕊雌蕊突变体的遗传分析一、水稻雄蕊雌蕊化突变体的遗传分析(论文文献综述)王昌健[1](2020)在《水稻花器官发育基因DPS2的鉴定和基因定位》文中研究表明水稻是我国重要的粮食作物之一,也是单子叶模式植物,其花器官的形成和发育与水稻产量密切相关。对水稻花器官发育相关基因的克隆和功能分析不仅有助于进一步认识水稻花发育的调控机理,也在未来高产育种中具有重要的实践意义。本研究中,我们从在CJ06和TN1的代换系中发现一个雄蕊和雌蕊发育缺陷的不育突变体,将该突变体命名为dps2(defective pistil and stamens 2)。在大田常规种植条件下比较了突变体dps2和野生型CJ06的主要农艺性状差异及花器官形态特征;扫描电镜及石蜡切片观察花药结构并用染色法观察花粉和胚囊的育性;利用图位克隆方法进行基因精细定位;结合转录组测序和RT-PCR分析了花发育相关基因在野生型和突变体中的表达水平。研究结果如下:dps2突变体抽穗期变长,小穗内稃和外稃发育正常,不能正常开颖扬花,成熟期小穗内部有花器官残留,且不能正常结实。突变体dps2其它农艺性状如株高、分蘖数、穗长、一次枝梗数、二次枝梗数无明显改变。dps2突变体雄蕊出现不同程度的皱缩,颜色透明呈浅黄色,雄蕊的数目增多,雌蕊皱缩且柱头数目增多;进一步观察发现,dps2突变体花药腔室塌陷,外表皮细胞褶皱且排列不规整,外表面光滑且没有蜡质和角质等线状物质分布,内无可见小孢子,亦有部分花药能形成腔室,花粉粒也无淀粉积累呈干瘪状,故突变体仅少量花粉具有活性。此外,dps2突变体的胚囊发育受到影响,胚囊中央无极核结构并出现细胞退化的痕迹。遗传分析发现dps2突变体受隐性单基因控制,通过图位克隆的方法,我们将DPS2基因定位于第4号染色体短臂上 Kb的区间内,该区间内未见报道的花器官发育相关基因。通过转录组测序分析发现,与野生型相比,dps2突变体中731个基因上调,1679个基因下调,这些差异表达基因参与生物代谢、生物调节过程等,其中9个基因涉及生长素的合成及信号转导途径。通过实时荧光定量PCR,发现dps2突变体中生长素合成相关基因TDD1的表达显着降低,生长素响应基因OsIAA3、OsARF11、OsARF3、OsARF15的表达显着升高,MADS-box基因家族中的B类基因OsMADS2、OsMADS4、OsMADS16和E类基因OsMADS1、OsMADS6、OsMADS7、OsMADS8在dps2中的表达显着升高。以上结果表明DPS2的突变可能影响生长素的合成或代谢,dps2突变体的雄蕊及雌蕊均发育异常,最终导致不育。推测DPS2可能在水稻第3轮雄蕊发育和第4轮雌蕊发育调控中发挥重要作用。杨芊[2](2020)在《TaWin1基因在小麦花发育过程中的功能初探》文中指出雄蕊是植物体内重要的花器官,它的生长发育情况直接影响植株的繁育和农作物的产量。雄性不育是由于雄蕊发育异常而不能产生可育后代且普遍存在于植物界的一种现象,在农作物杂交育种研究中,雄性不育系对培育优质、高产的品种具有十分重要的作用。小麦(Triticum aestivum L.)是世界上三大粮食作物之一。因此,研究小麦雌雄蕊的发育对改良小麦品质和提高小麦产量都具有十分重要的意义。小麦雄蕊同源转化为雌蕊突变体(HTS-1)是彭正松教授在培育小麦三雌蕊(TP)近等基因系CSTP的过程中意外发现的一个新的突变体。HTS-1的小花中雄蕊全部或部分同源转化为雌蕊,故其雌蕊数目一般为4-6个。因此该突变体全部或部分不育,在自然状态下,平均结实率仅为。遗传分析发现,该突变体至少由2个隐性基因控制(Pis1和hts),与细胞质遗传无关。其中Pis1基因已被定于2D染色体上并且控制着三雌蕊小麦的三雌蕊性状。而hts基于已被定位在4A染色体上的一个的区间,结合前期的转录组分析,在该定位区间内找到了一个在雄蕊化雌蕊(PS)中表达量异常高的基因,即TaWin1基因。因此推测TaWin1基因的过表达会引起小麦雄蕊同源转化为雌蕊。为了进一步探究TaWin1的功能,本研究以三雌蕊近等基因系CSTP、CM28TP和小麦雄蕊同源转化为雌蕊突变体HTS-1为实验材料,采用基因克隆、外源乙烯利与1-甲基环丙烯处理、Real-time PCR检测及转基因拟南芥等方法分析了TaWin1基因的功能。主要结果如下:1、TaWin1基因在CM28TP和HTS-1中的序列相似性为,其唯一的区别为在HTS-1中TaWin1基因的ORF下游区段插入了两个胸腺嘧啶(T)。因此TaWin1基因在CM28TP和HTS-1中的片段大小为883bp和885bp,其开放阅读框(ORF)长度为408bp。在整个编码区中,TaWin1的氨基酸序列与节节麦 Win1的相似度最高为,与花药野生稻 Win1和高粱 Win1的相似性分别为和,与玉米 Win1相似性为,与拟南芥亚型 Win1相似性为,与水稻 Win1的相似性为。系统发育树分析表明,TaWin1蛋白与节节麦 Win1、花药野生稻 Win1、水稻 Win1、高粱 Win1及玉米 Win1同属一类。且TaWin1与节节麦 Win1亲缘关系最近,因此进一步证实了TaWin1与Win1属于同一基因家族成员。Real-time PCR分析表明,与雌蕊(P)和雄蕊(S)相比,TaWin1基因在HTS-1的雌蕊化雄蕊(PS)中的表达量最高,约为正常雌蕊(P)的194倍,正常雄蕊(S)的86倍。2、利用乙烯利和1-甲基环丙烯(1-MCP)分别处理CSTP和HTS-1,其雌雄蕊性状发生明显变化,未经任何处理的HTS-1雌蕊化率为为,经1-MCP处理的HTS-1雌蕊化率为,经乙烯利处理的CSTP雌蕊化率为。经过1-MCP处理的HTS-1较未经任何处理的HTS-1的雌蕊化现象降低了,经乙烯利处理的CSTP较未经任何处理的CSTP的雌蕊化率升高。利用Real-time PCR分析了乙烯通路中关键基因的表达情况。结果表明ACO2、CTR1及EIN2在HTS-1的幼穗中的表达量较CSTP高,HTS-1经过1-MCP处理后其表达量下降,CSTP经过乙烯利处理后其表达量其表达量上升。ETR1和SAM基因在HTS-1的幼穗中表达量明显高于CSTP,HTS-1经1-MCP处理后表达量下降。ETR和SAM基因在经乙烯利处理的CSTP和未处理的CSTP幼穗中表达量均较低,且差异不明显。ACS的在HTS-1中的表达量高于CSTP(约6倍),经过1-MCP处理后HTS-1的表达量显着升高。经乙烯利处理的CSTP幼穗中ACS的表达量较未处理的CSTP升高。在所测定的6个基因中,EIN2基因的表达差异最为明显,EIN2基因在1-MCP处理的HTS-1中其表达量较未处理的HTS-1下调了约15倍,在乙烯处理的CSTP中其表达量较未处理的CSTP上调了约16倍。TaWin1基因在HTS-1的幼穗中表达量高于CSTP。HTS-1经1-MCP处理后其幼穗中TaWin1基因的表达量上调约倍。而CSTP经乙烯利处理后幼穗中的TaWin1基因的表达无明显变化。3、利用转基因拟南芥技术进一步分析TaWin1基因的功能,结果发现在拟南芥中TaWin1基因的过量表达导致拟南芥出现了一系列表型上的变化,如花丝和花梗长度明显缩短、花丝退化、花丝降解等。利用Real-time PCR分析了拟南芥中乙烯合成的三个关键酶基因AtACO2、At ACS和AtSAM在转基因拟南芥和野生型拟南芥中的表达情况,结果表明除At ACO2基因外,其它2个关键酶基因AtACS和At SAM在转基因拟南芥中均上调表达。这说明TaWin1在一定程度上促进了拟南芥中乙烯的合成。杨绮文[3](2019)在《水稻畸形颖壳突变体agl1的图位克隆和功能初步分析》文中研究表明水稻籽粒形态是影响其产量和品质的重要因素之一。本研究以水稻畸形颖壳突变体agl1(Abnormal glume 1)和野生型沈农9816为试验材料,利用石蜡切片、扫描仪、扫描电镜等仪器对突变体进行结构观察,同时分析突变对重要农艺性状的影响,并对突变性状基因进行定位克隆。研究结果如下:1.突变体agl1外稃如镰刀状向内弯曲,内稃退化,部分被外稃包住。扫描电镜观察发现,突变体呈双浆片状态,突变体的雄蕊略发白,长度相对野生型较短,雌蕊膨大。2.与野生型沈农9816相比,突变体agl1的花粉活力明显降低,花粉多呈不饱和的畸形状态。在单位面积内,野生型花粉聚集且饱满,突变体agl1花粉分散,数目明显少于野生型。单位面积内,野生型花粉活力为,突变体agl1花粉活力为。3.与野生型沈农9816相比,突变体株高变矮;与野生型沈农9816相比,剑叶叶夹角增加约20%,叶宽增加了18%左右。与野生型相比,突变体agl1的穗长相对较短,穗重明显低于野生型沈农9816,沈农9816的千粒重是,突变体agl1的千粒重仅有,差异显着。突变体的糙米籽粒小且畸形,突变体agl1的蛋白质明显高于野生型的,但直链淀粉和总淀粉含量低于野生型沈农9816。4.通过图位克隆的方法,将突变体基因agl1定位在第2染色体上分子标记和之间,遗传距离为 M。通过对区域内的OFR分析和预测,发现基因LOC_Os02g56610编码类DUF640结构域基因,调控水稻内外稃发育。对基因LOC_Os02g56610进行测序,发现突变体agl1在外显子上有一个碱基的替换(C→T),导致氨基酸翻译异常,由甘氨酸转变为谷氨酸,这可能是造成性状变异的原因。

274 评论

龙真妈妈

着丝粒是染色体的重要组成部分,介导染色体与微管的连接,并维持染色体的完整性。在种属间远缘杂种中,通常只有来自双亲一方的 着 丝粒特异组蛋白 CENH3 (centromere-specific histone 3) 基因表达并形成功能蛋白,整合到染色体特定的区域,形成有功能的着丝粒。双亲着丝粒序列差异过大,可能引起受体物种CENH3蛋白不能正常整合到外源染色体上形成功能着丝粒区,导致外源染色体的丢失(Sanei et al. 2011)。近日,张学勇团队在小麦族着丝粒DNA序列研究中取得新进展。该团队在以往的研究中发现,着丝粒反转录转座子 CRW 和 Quinta 是小麦着丝粒DNA组成的核心序列,与CENH3蛋白向小麦染色体的整合密切相关(Liu et al . 2008; Li et al . 2013)。

远缘杂交是作物品种改良的重要育种方法,在过去的100年里,科学家将小麦与许多近缘种属植物进行了杂交,其中十倍体长穗偃麦草( Thinopyrum ponticum )是小麦育种中利用最成功的多年生物种,从其杂种后代中选育出多个易位系和新品种,并培育出部分双二倍体(Partial amphiploids, 也称八倍体小偃麦)。 但在很长一段时间,小麦和十倍体长穗偃麦草容易出品种的机制并不清楚,为了揭示十倍体长穗偃麦草容易产生易位系的原因,该团队与中国科学院遗传发育所李振声院士团队合作,以着丝粒为切入点进行了研究,取得以下主要结论。

1.小麦着丝粒关键序列 CRW 和 Quinta 的同源序列广泛存在于十倍体长穗偃麦草着丝粒区,但后者也有一些比较特异的着丝粒序列

十倍体长穗偃麦草基因组复杂,其着丝粒序列也不清楚。研究人员首先通过Southern杂交发现小麦着丝粒反转录转座子 CRW 和 Quinta 广泛存在于十倍体长穗偃麦草及可能的祖先种中,但在大麦中确极少(图1)。随后,通过筛选着丝粒区特异BAC和ChIP-seq技术分别对二倍体拟鹅观草(十倍体长穗偃麦草供体之一, St )和十倍体长穗偃麦草进行着丝粒分析。发现除 CRW 和 Quinta 外,还有三类反转录转座子( Abigail , Abia 和 CL135 )和卫星重复序列( CentSt )也是偃麦草着丝粒特异序列(图2、图3)。                                    图1. CRW (A)和 Quinta (B)在小麦、偃麦草及其近缘野生种中的分布(上标代表不同小麦族植物的基因组)

图 2 . 十倍体长穗偃麦草(A)、中国春(B)、小麦-十倍体长穗偃麦草部分双二倍体小偃693(C)和小偃784(D) ChIP-seq着丝粒相关序列富集图

2.八倍体小偃麦中着丝粒DNA序列处于快速进化之中

为了探究从长穗偃麦草到八倍体小偃麦中着丝粒是否发生变化,研究人员通过免疫染色和DNA原位杂交对20世纪70年代培育的小偃693和小偃784进行了着丝粒序列分析,发现在小偃693中, CentSt 、 Abigail 和 Abia 仍保持与CENH3蛋白的结合能力,而在小偃784中 CentSt 和 Abia 基本丧失了这种能力,说明在 新物种中着丝粒DNA发生着快速的变化和调整,着丝粒DNA序列组成并非是永恒不变的(图3)。

图3. CRW , Quinta , Abigail , CentSt , Abia 和 CL135 在十倍体长穗偃麦草、中国春、小偃693和小偃784细胞核中与CENH3的共定位分析

3 .研究进一步证实E和St是十倍体长穗偃麦草的两个基本基因组

十倍体长穗偃麦草的基本基因组组成是一个争论了很久的问题。 张学勇等(Zhang et al. 1996)在GISH、八倍体杂种F1染色体配对、同工酶及分子标记的分析的基础上,提出用 StStEeEbEx 作为其基本基因组组成,但陈勤等认为十倍体长穗偃麦草只有 St 基因组片段,而无完整的 St 基因组, 并用 JJJJsJs 表示( J≈E,S=St )(Chen et al. 1998)。 通过同一细胞的多重原位杂交分析,张学勇团队发现在十倍体长穗偃麦草中, St 基因组染色体富含 Abigail 和 CentSt ,而 E 基因组染色体富含 CRW 和 Quinta ,进一步说明以 StStEeEbEx作为十倍体长穗偃麦草的基因组更为合理,也说明着丝粒区域是多倍体中亚基因组分化的核心区域 (图4)。

图4. Abigail , Quinta , CentSt 和 CRW 在十倍体 长穗偃麦草基因组中的分布

2019年6月30日国际著名植物学刊物《 The Pant Journal 》以题为“ Plasticity in Triticeae centromere DNA sequences: a wheat × tall wheatgrass (decaploid) model ” 在线发表了上述研究成果()。 这项研究说明供体和受体着丝粒序列的同源性可能更有利于外源基因的成功转移,为今后远缘杂交育种中亲本的选择提供思路。 南京农业大学在读博士研究生赵静和中国农业科学院郝薇薇博士为共同第一作者,张学勇研究员为通讯作者。该研究得到了国家自然科学基金31371622的资助。

主要参考文献:

Chen, Q., Conner, ., Laroche, A. and Thomas, . (1998) Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome , 41 , 580-586.

Li, B., Choulet, F., Heng, Y., Hao, W., Paux, E., Liu, Z., Yue, W., Jin, W., Feuillet, C. and Zhang, X. (2013) Wheat centromeric retrotransposons: the new ones take a major role in centromeric structure. Plant J , 73 , 952-965.

Liu, Z., Yue, W., Li, D., Wang, ., Kong, X., Lu, K., Wang, G., Dong, Y., Jin, W. and Zhang, X. (2008) Structure and dynamics of retrotransposons at wheat centromeres and pericentromeres. Chromosoma , 117 , 445-456.

Sanei, M., Pickering, R., Kumke, K., Nasuda, S. and Houben, A. (2011) Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc Natl Acad Sci USA , 108 , E498-505

Zhang, X., Dong, Y. and Wang, . (1996) Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum x Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome , 39 , 1062-1071.

313 评论

林hui杨65928

来自知网作者唐海峰摘要HTS-1是一种新型的小麦雄蕊同源转化为雌蕊突变体,与普通小麦不同的是它的雄蕊部分或者全部同源转化为雌蕊,甚至我们可以在HTS-1中发现没有雄蕊但出现6个雌蕊或者6个雌蕊化结构的小花。因此HTS-1在研究小麦育种和花发育中具有很重要的...更多关键词小麦;基因分型测序(GBS);雄蕊同源转化为雌蕊突变体;Win基因收藏全部来源 求助全文知网相似文献 参考文献利用小麦高密度遗传图谱定位雄蕊同源转化为雌蕊基因hts《西昌学院学报(自然科学版)》 - 2022 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建、重要性状QTL发掘及近等基因系创制莫洪君 - 《西昌学院学报(自然科学版)》 - 2014 - 被引量: 2利用基因芯片技术进行小麦遗传图谱构建、重要性状QTL发掘及近等基因系创制莫洪君 - 四川农业大学 - 0 - 被引量: 0小麦硒含量控制基因的QTL定位及遗传分析裴英 - 《四川农业大学》 - 2016 - 被引量: 0应用快速切片法观察芍药不同花型品种花芽分化进程张建军,赵芮,朱炜,... - 中国观赏园艺学术研讨会 - 2018 - 被引量: 0栽培大豆×半野生大豆高密度遗传图谱构建及株高QTL定位于春淼张勇王好让杨兴勇董全中薛红张... - 作物学报 - 2022 - 被引量: 0鱼类遗传连锁图谱构建及QTL定位的研究进展陈军平胡玉洁王磊田雪李学军 - 水产科学 - 2020 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建及粒重QTL分析陈建省,田纪春,陈广凤,... - 《中国农业科学》 - 2014 - 被引量: 61一个新的水稻叶片和雌蕊发育异常突变体的遗传分析及其基因的分子标记定位罗琼,王文明,肖晗,... - 《科学通报》 - 2001 - 被引量: 84基于SLAF-seq的小麦高密度遗传图谱的构建及品质性状的QTL定位李俏,潘志芬,高媛,... - 全国小麦基因组学及分子育种大会 - 0 - 被引量: 0基于SSR分子标记的福建百香果品种鉴定及指纹图谱构建魏秀清,李亮,熊亚庆,... - 福建农业学报 - 2022 - 被引量: 0小麦眼斑病抗性基因Pch1和供体的遗传图谱及Pch1转移片段的遗传多样性魏乐 - 中国科学院研究生院 中国科学院大学 - 2010 - 被引量: 0两份水稻花器官突变体的形态学观察、性状的遗传分析及相关基因的分子标记定位张绪梅 - 2003 - 被引量: 15割手密高密度遗传图谱的构建及黑穗病QTL定位杨翠凤 - 《广西大学》 - 2015 - 被引量: 1小麦高密度遗传图谱的构建及分蘖成穗的QTL定位胡洋山 - 四川农业大学 - 0 - 被引量: 0基于QTL作图与NGS-based BSA解析月季重瓣性状的形成机制姜珊 - 四川农业大学 - 0 - 被引量: 0万寿菊雄性不育性状的遗传分析及其育种应用何燕红 - 四川农业大学 - 2010 - 被引量: 3桃遗传连锁图谱的构建及雌蕊败育性状的定位乔飞 - 《西北农林科技大学》 - 2003 - 被引量: 8芦笋雌雄花发育转录组分析及性别决定相关miRNA靶基因的鉴定秦力 - 《西北农林科技大学》 - 2016 - 被引量: 4扁豆分子遗传图谱构建、主要农艺性状QTL定位及花序发育的生理学研究袁娟 - 2009 - 被引量: 7木绣球与荚蒾杂交的生殖生物学研究程甜甜 - 山东农业大学 - 2014 - 被引量: 1天山樱桃种质资源遗传多样性研究李春侨 - 新疆农业大学 - 0 - 被引量: 0利用EST-SSR分子标记构建小麦遗传图谱代畅 - 西华师范大学 - 0 - 被引量: 0基于两个RIL群体的小麦产量相关性状的QTL定位吕栋云 - 西北农林科技大学 - 0 - 被引量: 0利用基因芯片技术进行小麦遗传图谱构建及株型相关性状的QTL定位连俊方 - 《西北农林科技大学》 - 2016 - 被引量: 2陆地棉×毛棉种间高密度遗传图谱的构建Khan,Muhammad Kas... - 《中国农业科学院》 - 2013 - 被引量: 1西瓜高密度遗传图谱构建及三个果实性状相关候选基因的精细定位李兵兵 - 中国农业科学院 - 0 - 被引量: 0小麦抗条锈新基因YrTp1和YrTp2的发现和分子标记定位殷学贵 - 2005 - 被引量: 10鸭茅分子遗传连锁图谱构建及开花基因定位谢文刚 - 2013 - 被引量: 5

279 评论

相关问答

  • 生物遗传和遗传疾病论文

    遗传与变异 ---新形式下的基因突变 ( 2005动物科学院 X X X ) 摘要:染色体:1、染色体的结构 有丝分裂中期,每一染色体都具有两条染色单体,称为姐

    小妮子乖乖81 3人参与回答 2023-12-09
  • 麦琪的礼物论文参考文献

    又一年的高考到了,很多同学在高考中害怕遇到 高考 作文 议论文 ,不知道怎么写议论文,可以多看一看那些 高考满分作文 哦!下面是我给大家

    萌哒哒的Ashley 5人参与回答 2023-12-09
  • 作物遗传育种毕业论文范文

    在研究生阶段,同学们总能收获慢慢,从学业、科研工作,到个人素质,都可以得到充分的培养和锻炼,是充实且有意义的三年。下面是我为大家整理的“研究生毕业生自我鉴定10

    老李重庆 2人参与回答 2023-12-11
  • 生物遗传类论文参考文献

    生物基因工程论文参考文献汇总 生物基因工程论文参考文献怎么写?有哪些格式要求,下面我就为大家推荐一些优秀的范例,希望

    肥肥肥肥啊 3人参与回答 2023-12-11
  • 小麦遗传物种论文参考文献

    首页智能降重人工降重论文查重登录注册首页 > 正文水稻雄蕊雌蕊突变体的遗传分析一、水稻雄蕊雌蕊化突变体的遗传分析(论文文献综述)王昌健[1](2020)在《水稻

    心菲殿下 3人参与回答 2023-12-06