smilejoyce922
先将书仔细看一遍,每一章看完后,便做课后习题,此时肯定是有许多的题不会做,没关系,将不会做的用笔做个记号,接着做后面的题。将不会的习题翻书找出它在哪节中出现过,仔细想想,如果实在想不出就看看什么的,总能找出相似的例题。将整本书全部按上述方法做完后开始做模拟试卷,将不会的题对着课本目录寻找它跟哪章哪节有联系,然后将相关章节仔细看一遍,再回过头来做题.公式要记熟,主要是几个,基本的函数公式,洛必达法则,中值定理,导数公式,积分公式,微分公式;例题要做熟,其实例题都是按公式的套路来的,做熟就行了,考试中一定都是那几个公式都要考的。作业非常重要,一定要认真,保质保量地完成,可以与参考书对照。上高数课往往有这样的感觉,很容易忘记,上一次课的内容到下一次课也许就忘光了,所以复习是必须的.学完一章后,最好把这一章没有做过作业的习题都做一遍,这样便于理清条理,也是对自己学习情况的检测。不然等到考试才发现自己还有很多问题不懂,那就麻烦了。考试形式和难度与课后习题相差无几,考试前做一下这些题是很有用的。
红泥娃娃
“数学是美的。”经常有数学家这么讲,那么,数学到底美不美呢?大一第二学期我们接触了高数这门课,本来觉得应该比高中的数学稍微难一点吧,可是一上课才发现并不是难一点,而是难很多很多,比高中的数学更加抽象,更加难理解。但是慢慢的你会发现其实高数是一门学问,而且这门学问也有他的美。仔细想了想,发现数学的美体现在方方面面,就比如自然之美,简洁之美,对称之美,逻辑之美等等,中国悠久历史所积淀出来的文学底蕴,为中国的数学染上了一层夺目的别样的颜色,这就是数学之美,总之,数学并不像有些人认为的那般鼓噪乏味,他不是定理公式的积累,而是一种美的学科。在中国书香四溢的文学背景下,数学也闪烁着不一样的光辉。也经常听到有同学发出这样的疑问:“我们为什么要学数学?”不知道这些人当中有没有认真思考过这个问题,我倒是稀里糊涂读到大学才明白一点的。数学,我们学的应该是一种严谨的思维,一种观念。出了学校门,如果我们还能经常使用数学的眼光来观察周围事物,那么,这个数学才没有白学。我一直觉得,如果你把函数真学懂了,对已知和未知的依存关系就会特别敏感,社会上的许多看似纷繁复杂的事件,在你眼里就能看到关键因素,形成函数式。你会有另一种看待万事万物人视野。我们学数学,目的是学解题技巧?是挤进名校的砝码?还是将来能谋份不错的职业?数学的发源地在希腊,注定数学的性格就是超越的,我们把它作为换取利益的工具时,一开始这条路就走岔来的。所以,要培养好我们学数学,最初就要培养我们有良好的数学素养,求真,求美,求善。当然,数学一直是人类文明发展的主要文化力量,同时人类文化的发展又极大地影响了数学的进步;而且,数学还是一种艺术,因此,数学不但具有科学价值,还具有文化和艺术的价值。那么,这就需要我们一步步的认知到数学的各种价值,可以从生活中的数学学得数学思想方法与文化以及数学与人文精神、文化素质间的联系。总之学好高数,此生不后悔。
无痕之音
作为大学高数,我们从高中时期就一直听别人说高数怎么怎么难,搞得一直都对高数产生恐惧心理,那么作为大一新生该如何正确的面对高数,如何学好高数?大一新生刚刚从中学跨入大学的校门,不了解《高等数学》课程的特点和重要性,难于掌握一套科学的学习方法,以及对高等数学课程学习的重要性没有足够的认识,从而导致没能学好这门课,对这门课感到力不从心。大一新生必须首先明确高数的重要性,不仅仅作为大学其他课程的基础,又是毕业走向工作岗位后,势必有很多问题都是要用到数学知识的,因此数学这门课也越来越重要,学好高数也就成了明确的任务。那么大一新生怎样才能学好高等数学呢?学习高数,我们应当摒弃中学的学习方法,尽快适应环境,不仅要在环境上、心理上适应新的学习生活,同时学习方法的改变也是至关重要的。首先是在上课的时候一定要认真听讲,既然是高数课,自然是老师讲课是最重要的,所以,上课努力起早去坐前排吧。其次,应该买本靠谱的考研书,上课都没怎么听懂听不下去怎么办,这个时候不用慌张,一本好的考研书帮助还是挺大的,其实说白了就是做好数学定义的理解,高等数学的关键就在于理解数学,并不只是仅仅要求你会做题,更要你会理解,所以定义必须牢记于心。大一新生如何学好高数?然后就是不明白的问题在课上一定要消化,这是学数学最重要的,模棱两可是可是学习数学最忌讳的东西,所以记好笔记是关键,书本上一些没有的证明和老师上课随性发挥的精华可是一瞬即逝的,所以记好笔记很重要,还能有助于上课认真听讲呢。还有的就是按时做作业,高中时没日没夜的做作业,大学高数也当如此,高数的作业会有很多,而去写这些作业对你学好高数的重要性也是不言而喻的,而且作业好还能给你带来平时分,针对性的多做题,有益于对定义的理解。
Antares米罗
高数学习应该按照这些套路来。
课前有的同学喜欢预习,这点在初高中数学,非常有效,可是在面对高数的时候蒙圈了,因为根本看不懂,不过没关系,高数不用课前预习,因为你也看不懂,但是,上课一定要 认真的听讲,记得是认真的听讲,特别是认真听讲老师的推倒过程,这点是非常重要的,高数不仅仅要知道结果,重要的是过程。
至于在课后,当然还是和普通的数学学习方法一样,及时的复习,复习当天的内容,特别是要做一定量的题目,理解消化和吸收。
当然作业也是一项非常重要的事情,做作业一定要认真,虽然大学抄作业不丢人,因为还有不写作业的,但是,你如果是抄作业那还不如不写,建议认真完成高数的作业,因为实在太重要了。
数学中的无穷以潜无穷和实无穷两种形式出现。
在极限过程中,变量的变化是无止境的,属于潜无穷的形式。而极限值的存在又反映了实无穷过程。最基本的极限过程是数列和函数的极限。
数学分析以它为基础,建立了刻画函数局部和总体特征的各种概念和有关理论,初步成功地描述了现实世界中的非均匀变化和运动。
数学的计算性方面。在初等数学中甚至占了主导的地位。它在高等数学中的地位也是明显的,高等数学除了有很多理论性很强的学科之外,也有一大批计算性很强的学科,如微分方程、计算数学、统计学等。在高度抽象的理论装备下,这些学科才有可能处理现代科学技术中的复杂计算问题。
以上内容参考 百度百科-高等数学
流虹星607
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示:这部分学生或者学习兴趣不高,或者学习不得要领。因而, 高数学习必须充分调动学习者的积极性, 掌握合适的学习方法,才能有所收获。1 学习者要意识到学习高数的重要性, 提高学习兴趣, 变被动学习为主动学习据了解, 许多学生意识不到高数学习的重要性,他们对大学课程里学习高数的重要性不甚清楚,也没有学习的热情,更谈不上积极性了。1 . 1 数学教育具有重要的基础性作用与素质教育作用现代信息、空间技术、核能利用、基因工程、微电子、纳米材料等引领的新技术革命, 以及现代人文科学的定量分析需要以数学为主要基础。数学学科严密的定义方式、缜密的逻辑思维、全面的系统分析是辩证唯物主义思想在数学学科中的集中反映, 在大学生素质教育中起着不可替代的作用。素质表现在数学意识、数学语言、数学技能、数学思维四个方面。素质的提高有助于学生形成良好的思想道德素质,科学文化素质,生理心理素质,从而提高人的素质。这是有例子可以验证的。以北京大学地质系为例,一个系就培养了48 位中科院院士, 而这得益于李四光先生的理念——加强数理基础, 原因就是学生的工科数学基础好、逻辑思维强、头脑清晰。1 . 2 培养对高数的兴趣能激发学习热情“兴趣是最好的老师”。心理学家布鲁纳认为:“学习是主动的过程,对学生学习内因的最好的激发是对所学教材的兴趣。”“有了兴趣就会乐此不疲,好之不倦,就会挤时间学习了。”学生只有对学习感兴趣,能把心理活动指向和集中在学习的对象上,感知活跃,注意力集中,观察敏锐,记忆持久而准确,思维敏锐而丰富,强化学习的内在动力,调动学习的积极性,激发智力和创造力,提高学习效率。 提高学习高数的兴趣首先从了解数学史做起我们可以首先了解中国数学史,了解中国数学的萌芽、发展、全盛、衰弱的过程和原因;我们还可以从高数中的微积分发明的历史谈起,通过对历史的了解和感受来体会到数学的博大精深,激发探求欲望。
晓柚崽崽!
这个问题,看上去是一个小问题,很多学生一看问题,便会自以为是、好为人师地信口开河。其实这是一个大问题,涉及到数学、科学、哲学、文化、宗教学、民族学、科学学等问题。写深了,会成为众矢之的,会成为民族罪人,会死无葬身之地。 下面的一段本人感悟,供楼主参考,有疑问时,欢迎追问,欢迎讨论,欢迎批判,以期抛砖引玉之效。下面针对本题具体解说: 1、极限的最早萌芽概念,我们祖先也有过,但是被当成诡辩学而埋葬了。 时至今日,仍有绝大多数数学教师,一提到诡辩学,立马教条式地彻 底否认,没有思辨的任何理性空间。 2、鬼子的祖先,也有诡辩学,他们认认真真地研究了paradox,由此而 建立了极限理论。极限理论是桥梁,桥的这边是初等数学,桥的那边 是微积分,是高等数学。我们的理论贡献局限在桥这边,桥那边的理 论世界的建设,我们几乎完全是手无寸功,我们在科研上的落后就是 从这里开始的。 3、极限的理论究竟是什么呢? 第一,极限的证明理论 这就是我们的大学新生大学伊始时,兴致勃勃地心情遇到的第一记沉重的闷棍。极限的理论,其实是吵架的理论,是无止境争辩的过程,也是无穷列举法的理论化过程。例如:(1)、我说当 x 无限趋向于 2 时,x² 就无限趋近于 4。(2)、你不信,你要我证明给你看。(3)、我说,那你随便给一个很小的数,你给了。(4)、我通过计算,我说只要 x = 就行。(5)、你反悔了,改成了。(6)、我重新计算了一下,我说只要 x = 就行。(7)、你又反悔,又改成了。(8)、我又重新计算,我说只要 x = 就行。(9)、你再次反悔,再改成。(10)、我再次计算,我说只要 x = 就行。 、、、、你不断地反悔,不断地提出越来越苛刻的数据,我也不断地计算, 不断给出越来越接近于2的具体数,也就是越来越限制了 x 趋近于 2 的程度、、、、、 结果我们都厌烦了。 (11)、我说,别闹了,你给出一个可以表示很小很小的象征性的数字吧。(12)、你给出了一个代号 ε。(13)、我根据你的代号 ε,经过一番计算,找到了另外一个数字代号 δ。 我对你说,你自己随便找一个跟 2 的差距不大于 δ 的数就可以了。 算了,算了,我把计算公式也给你吧,你自己出 ε,自己去找 δ, 这样你还有什么话说?争吵就这样结束了,无穷列举法,就变成了一个理论计算过程,结果就得到了证明。 这个证明逻辑思路是: 只要你给得出一个无论多小的数,ε;我就能根据你的 ε,算出一个 δ ;只要将x 的取值,限制在 δ 的范围内,函数值与极限值之差就小于 ε。由于 ε可以任意的小,两者之差可以无止境的小下去,就证明了极限。 δ 是根据 ε 算出的,我算出一个δ,你可以用比我更小的 δ 限制 x 的范围,所以,ε是任给的,δ 是根据 ε 推算的,但 δ 不是唯一的,可以有无数个更严格的、更小的值。所以说,总存在一个 δ,但是这个 δ,必须由我们去根据 ε找出来。 第二、极限的计算微积分的前面部分,就是寻找各种计算方法,最典型的是罗毕达法则。 第三、极限的运用可以说极限是微积分理论的基础部分,也可以说,微积分是极限理论的运用部分。谁归属于谁,就看你怎么划分了。 如果你不能明白极限的理论证明方法,那么,我们得恭喜你!你真正理解了我们传统的优秀数学史,到了近代数学时,怎么突然落后了、落伍了。当代理论,我们没有参与建立,迄今为止,我们还处于三流开外。你没有明白,不能明白,说明你穿越了,体会到了我们古人的局限性。 如果你明白了极限的理论证明方法,那么,我们得祝贺你!你真正开始领略到了现代数学、现代科学的真谛。体会到了我们传统的、定性的、摇头晃脑的、模棱两可的、之乎者也的、不求甚解的、咋咋呼呼大大咧咧的学风,跟现代数学、现代科学、现代医学、、、、、之间的鸿沟是多么得深,多么得广,多么得不可同日而语,多么得悲从中来。你明白了,说明你突破了我们古人的局限。
在本文中,我整理了关于反思的议论文素材,来看看吧!希望可以对你的作文有帮助! 一、正面事例: 1、孔子的学生曾子每天进行自我反省,反省自己为他人做事是不是尽心竭
随着学生主体的变化,新的科技成果的出现,高等数学创新成为必然的趋势。下面是我为大家整理的高等数学论文,供大家参考。 一、高等数学在地方高等职业教育中遇到的问题及
先将书仔细看一遍,每一章看完后,便做课后习题,此时肯定是有许多的题不会做,没关系,将不会做的用笔做个记号,接着做后面的题。将不会的习题翻书找出它在哪节中出现过,
作为一位优秀的老师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,那么优秀的教学反思是什么样的呢?下面是我整理的高二上册语文教学反思,欢迎
高数学习对许多大一学生生来讲, 有些困难,成绩不理想。教师一直在苦苦思考:虽然教师在授课过程中尽了种种努力, 但还是有许多学生学习不好, 这是什么原因?调查显示