a宝贝洁洁
船舶与海洋工程结构极限强度分析论文
船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助!
摘要: 当轮船受到外部冲击载荷时,轮船整体结构就会变形,当这个变形达到最大极限状态,这时的极限状态叫做极限弯矩。轮船整体构架承受全部抗击的最强能力是极限强度。本文对船舶结构极限强度。进行了分析和研究,提出了有限元分析方法进行强度和极限分析。
关键字: 极限强度,船舶,结构,船舶与海洋工程
随着科学技术的不断进步,轮船结构以及轮船使用的材料都有很大的进步。船体的整体结构和材料成为当今社会研究的主要对象。随着计算机技术的日益成熟,船体整体结构和承受的。屈服力都可以采用软件仿真来快速精确的计算。
1.引言
船体的整体结构和承受的能力是保证轮船安全的重要保障,它关系到轮船是否安全出航和安全返航。随着先进的设计技术的进步,计算机相关设计软件已经可以。设计整体结构和仿真测试船体的整体结构。分析船体结构和整体强度是一个复杂的非线性过程,必须进行合理的划分,采用好的分析方法才能得出精确的数值。新材料的不断出现使船体材料耗费变的越来越经济合理,同时船体结构屈服强度也变的越来越理想。
在分析船舶整体结构变形和极限强度的时候,我们所研究的绝大多数问题都是属于线性的微弱形变问题。在微弱整体的结构中,位移和应变可以被线性化,等效于正比关系。但是,在实际中,不规则物体所受的应力和应变都不是线性的,常见的有悬臂梁的弯曲,U形梁的变形等等。
2.总体结构状态
船舶的总体结构状态时一个非常复杂的过程。总体结构的崩溃在过去几年是一个非常普遍的现象,它是船体结构所受冲击超过了材料本身的极限,这时候支撑梁不能够支撑船体整体结构。以上情况不足为奇,在飞机和潜艇外体上也经常出现类似情况。目前,中国的船体分析技术的研究还处于起步阶段,与国外发达国家。先进水平仍有很大的差距。为了进一步研究分析,我国投入资金和人力,在实际工程中,建立一个比较完善的船体分析系统,包括原动机转速控制系统,同步船体结构系统,轮船控制系统管理相关技术的研究,实验研究了一系列模拟各种恶劣的条件下,容易控制船体结构的一些关键技术,并做了可行性分析。船舶具有非常重要的作用,特别是对船体分。析屈服强度的分析,轮船安全可谓海军舰艇的生命线。动力和结构形成一个整体轮船系统,为船体结构极限强度分析的发展。指明了方向。
3.极限强度分析法
如何分析船舶结构的极限强度是一个复杂而且非常有意义的过程。分析这种复杂的船体结构没有一种比较准确的分析方法。在分析极限强度的时候,我们通常采用复杂问题简单化,采用线性和非线性结合的方法,有限元和边界元分析相结合的方法。
逐步破坏分析法
上世纪末,美国物理学家的在基于对悬臂梁、加筋板在轴向压缩载荷作用下结构失效问题的研究成果中提出了逐步破坏的分析方法。船体结构破坏不是一个迅速变化的过程,是一个一步一步的程序,同时也不会一下子超过屈服极限,随着应力的增大逐渐的增大的逐渐破坏。在进行破坏分析的时候,首先建立屈服应力和位移的曲线关系。
非线性分析法
分线性分析方法必须。对船体分析采用模块化分析,必须充分考虑如何进行分段,分段之后逐个段进行非线性分析。在这个工程中,一个段的结构有自己的不同,针对不同结构进行线性化分析和非线性化分析。每个分段包含一个骨架间距内的所有主要构件,选择或者利用发生崩溃概率最大的情况进行分析的原则,对所承受的分段骨架进行全面的分析和仿真。这种分析方法需要对每一段进行模型建立,然后一个模型模型的分析。船体总体结构的弯曲和抗屈服能力不同导致分析结果不同。
有限元分析法
有限元分析方法是结构分析的简单方法,它能把复杂问题简单化,分析整体结构的节点和网格。在进行有限元分析的时候,通常对船体结构进行网格划分,然后进行网格施加约束,在均匀网格上施加可变的。激励,观察整体结构的响应。采用这种方法能模拟船体的边界条件和整体约束。有限元分析方法综合考虑。船体的形状和材料的'不同,通过不同载荷的约束,我们可以分析出结构极限(包括最大应力,最大屈服极限)。最近几年,有限元分析方法被应用在船舶整体分析和部分结构分析的案例非常多。这种分析方法有两个个缺点。一是。不能很好的模拟真实环境,不能考虑周围环境对整体结构形变的影响。第二对于结构复杂的构件,有限元分析方法对于复杂的结构不太实用,设置相关算法时间太长,不能在有效的时间完成任务。这种分析方法的优点有以下几个方面:
(1)对船体建模方式直观明了。在分析结构的时候可以采用线性划分和非线性划分网格。采用相关软件完全可以分析所有动态结构的模型和仿真。利用有限元分析模块的可视化建模窗口,动态结构的框图和模型可迅速地建立和仿真研究。用户需要选择元件库(对应的子模块程序模块)中选出比较合适的模块,然后并改变需要的形式,拖放到新建的建模窗口,鼠标点击或者画线连接都可以搭建非常可观的结构模型。他的标准库拥有的模块远远大于一百五十多种,可用于搭建和仿真各种不同的、种类变化的动态结构。模块包。括输入信号源子模块、动力学元件子模块、代数函数和非线性函数子模块、数据显示子模块模块等。模块可以被设定为触发端口和使能的端口,能用于模拟大模型结构中存在条件作用的子模型的行为。
(2)可以构建动态结构模型。可动结构的模型可以修改并进行仿真。有限元分析还可以作为一种图形化的、数字的仿真工具,用于对动态结构模型建立和操作改变规律的研究制定。
(3) 模块元件与用户代码的增添和定制。已有模块的图标都可以被用户修改,对话框的重新设定。用户完全可以把自己编写的C代码、FORTRAN代码、Ada代码直接植入模型中,此外模块库和库函数都。是可定制的,扩展以包容用户自定义的结构环节模块。。
(4)设计船舶结构模型的快速、准确。他拥有优秀的积分和微分算法,这样给非线性结构仿真带来了极大的方便,同时也带来了相对较高的计算精度。可以选择比较先进的常微分方程求解器和偏微分方程求解器,还可用于求解力学刚性的和非刚性的结构,还可以求解具有事件触发的逻辑结构,求解或不连续状态变量的结构和具有代数环和参数环的结构。软件的求解器可以确保连续结构或离散结构的仿真高速、准确的进行。
(5)复杂结构可以分层次地表达。根据个人需要,若干子结构可以由各种模块组织。按照自顶向下(从元器件到结构)或自底向上(从实现的每一个细节到整体结构)的方式搭建整个结构模型。这种分级建模能力能够使得代码丰富的、体积庞大的、结构非常复杂的模型可以简便易于行动的构建。结构子模型的层次数量和子子模块的分层次数量完全取决于所搭建的结构,软件本身不会限制到搭建的模型。有限元还提供了模型和子。模块结构浏览的功能。这样更加方便了大型复杂结构结构的操作。
(6) 仿真分析的交互式。该软件显示的示波器可以图形显示和动画的形式显示出来,数据也可以动作的形式显示,What-if分析运行中可调整参数模型进行,监视仿真结果能够在仿真运算进行时。可帮助用户不同的算法可以快速评估,进行参数优化这种交互式的特征。
由于有限元模块是全部融合于有限元,一次在有限元模块下所有的计算的结果都完全可保存到有限元软的工作空间中,因而就能使用有限元所具有的众多分析、可视化及工具箱工具操作数据。
4.船舶在军事上的发展状况
在军事上的应用:在上世纪90年代,以美国为首的国家海军大力发展海军轮船性能优化,整体结构和性能得到优化。于93年提出了水面舰艇先进机械项目计划(提前海洋表面计划ASMP)。
美国的目的是建立一个国家的最先进的舰艇推进系统,能够实现远程作战和抗高撞击的能力。美国海军采用先进的智能设备,同时采用电气控制和机械控制系统。在同一时间满足指定的性能,在分析极限强度上加大了投资,军用船舶的其他方面投资也有显着的减少。随着ASMP计划进一步研究,权力一体化“和”模块化“的方法来研究船舶电力发电、运输、转化、分配。利用共享设置海军的推进装置用电、日常的用电。各种武器装备输电发电和配电系统构成的综合电力系统,美国海军相当重视电力在船舰上的应用。
我国海军在研究这方面也不逊色,国内有先进设计理论和分析方法。对船舶承载能力和撞击能力做过实验分析。
5.总结
本文介绍了船舶结构极限分析的三种不同的方法,并进行了对比分析,最后得出结论:有限元分析方法耗时比较长,但是能够很高的分析和仿真船舶结构极限。
参考文献
[1]祁恩荣,彭兴宁.破损船体非对称弯曲极限强度分析首届船舶与海洋工程结构力学学术讨论会论文集,江西九江:
[2]徐向东,崔维成等.箱型粱极限承载能力试验与理论研究.船舶力学,2000,4(5):36-43
[3]朱胜昌,陈庆强.大型集装箱船总纵强度计算方法研究.船舶力学,2001,5(2):34--42
[4]郭昌捷,唐翰岫,周炳焕.受损船体极限强度分析与可靠性评估.中国造船,1998(4):49—56
顺其自然0012
首先:声明,不是我总结的中国的航海有着悠久的历史,对历史经济的发展也有着深远的意义。在陆上交通工具不发达的时代,船舶运输担当着主要的交通工具。从"刳木为舟,剡木为楫"到郑和下西洋,再到现代的先进的远洋技术,中国航海有着突飞猛进的发展。中国同时通过海路走向世界, 同世界各国进行经济文化交流, 发展友好关系, 共同促进人类文明的进步。 人类使用船舶作为运输工具的历史,几乎和人类文明史一样悠久。从远古的独木舟发展到现代的运输船舶,大体经历了四个时代:舟筏时代、帆船时代、蒸汽机船时代和柴油机船时代。 舟筏时代 人类以舟筏作为运输、狩猎和捕鱼的工具,至少起源于石器时代。中国1956年在浙江出土的古代木桨,据鉴定是四千年前新石器时代的遗物。说明舟筏的历史,可以追溯到史前年代。 独木舟 原始人类将巨大树干用火烧或用石斧加工成中空的独木舟,是最古老的水水上运输工具。它的踪迹遍于全世界,至今在南美洲和南太平洋群岛的居民,仍使用独木舟作为生产和交通工具。 筏 远古人类就知道将树干、竹竿、芦苇等捆扎成筏,或用兽皮做成皮筏,在水上漂行。筏较独木舟吃水浅,航行平稳,而且取材方便,制造简易。在中国东南山区溪流中,使用竹筏作为交通工具迄今仍然相当普遍。 木板船 进入青铜器时代以后,人类对木材的加工能力提高了,于是将原木加工成木板来造船。木板船可以造得比独木舟大,性能比筏好。木板平接或搭接成为船壳,内部用隔壁和肋骨以增加强度,形成若干个舱室。早期的木板船,板和板之间、船板和框架构件之间是用纤维绳或皮条绑缚起来的,后来用铜钉或铁钉连接。板和板之间则用麻布、油灰捻缝,使其水密。 桨、篙和橹 舟筏时代的船舶靠人力来推进和操纵,所用的工具为桨、篙和橹。桨不受水域深度和广度的限制,在地中海区域应用极为广泛。古罗马的划桨船,用奴隶划桨,一船桨数多至数十根甚至百余根。篙可以直接触及水底和河岸,使用轻便,主要用于浅水航道。橹是比桨先进的划船工具,效率高而不占水面,兼具推进和操纵航向的功能,在中国内河木船上广泛使用。 帆船时代 据记载,远在公元前四千年,古埃及就有了帆船。中国使用帆船的历史也可以追溯到公元以前。从15世纪到19世纪中叶,是帆船发展的鼎盛时期。15世纪初中国航海家郑和远航东非,15世纪末C.哥伦布发现新大陆,他们的船队都是由帆船组成的。在帆船发展史中,地中海沿岸地区、北欧西欧地区和中国都曾作出重大贡献。19世纪中叶美国的飞剪式快速帆船,则是帆船发展史上的最后一个高潮。不同地区的帆船,在结构、形式和帆具等方面各有特色。 地中海的古帆船 埃及出土的一件公元前四千年的陶器上绘制有最古的帆船的图象。船的前端突出向上弯曲,船的前部有一个小方帆,这种船只能顺风行驶,无法利用旁风。公元前2000~前1600年,腓尼基人、克里特岛人和希腊人都先后在地中海上行驶帆船。克里特岛人的帆船两端翘起,单桅悬一方帆,这种船型在地中海应用了几千年之久。古希腊和古罗马的帆船备有桨,只在进出港口和调度时才使用。古希腊帆船干舷高,耐波性好,单桅上挂方帆,船尾两侧有巨大的尾桨,起舵的作用。船首伸出的桅桁上增一小帆便于操纵。单桅横桁上边增设三角顶帆。古罗马的帆船又有改进,增设前后三角帆,船的操纵性能得到改善。 北欧和西欧帆船 公元9~11世纪北欧的维京人,是当时世界上优秀的航海民族,航迹远达格陵兰和北美。他们用当地出产的橡木造出了适航性能良好的帆船。这种帆船长约30米,宽约6米,首尾形状接近对称,有龙骨和首尾柱。外壳板搭接并用铁钉相连。船上树单桅,装有支桅索,挂一面方帆,能在横风下行驶。船形瘦削,耐波性优于地中海帆船。 1492年,C.哥伦布率领西班牙船队到达西印度群岛。他所乘坐的“圣玛丽亚”号,是一艘长28米、排水量约200吨的三桅帆船。1497年,.伽马率领葡萄牙船队绕过好望角发现通往印度的航路。1519~1522年,F.麦哲伦率领的西班牙船队完成了环球航行。这一系列地理上的发现,大大刺激了欧洲航海和造船事业的发展。16世纪以后,欧洲帆船的排水量逐渐增大到500~600吨,帆具日益复杂,三桅船渐趋普遍,帆面不断增大。大桅上增装了顶桅和顶帆,主帆下装了底帆,桅的支索上张了三角帆,船上整个空间都张满了帆,航速得到提高。1800年前后,英国继葡萄牙、西班牙之后成为最大的海上强国。英国及其殖民地拥有海上帆船达5000艘。 飞剪式帆船 这是起源于美国的一种高速帆船。前期的飞剪式帆船,可以1833年建造的“安·玛金”号为代表,排水量为493吨。飞剪式帆船船型瘦长,前端尖锐突出,航速快而吨位不大。19世纪40年代,美国人用这种帆船到中国从事茶叶和鸦片贸易。以后美国西部发现金矿而引起的淘金热,使飞剪式帆船获得迅速发展。1853年建造的“大共和国”号,长93米,宽米,深米,排水量3400吨,主桅高61米,全船帆面积3760平方米,航速每小时12~14海里,横越大西洋只需13天,标志着帆船的发展达到顶峰。19世纪70年代以后,作为当时海上运输主要工具的帆船,被新兴的蒸汽机船迅速取代。 中国帆船 中国帆船也有二千多年的历史。据《史记·秦始皇本纪》记载,秦王朝曾派徐福携带童男童女及工匠人等数千人,乘船出海。三国时代东吴太守万震所著《南洲异物志》中,有关于访问今日的柬埔寨、越南等地所乘大船的记述。唐代与日本文化交往频繁。中国当时的帆船已能驶侧向逆风,有较好的耐波性。唐贞观年间,从今温州至日本,仅需6天;以后能以3天时间从中国镇海驶抵日本。宋代造船和航海事业均有显著进步。当时所造海船能载500~600人,并已使用指南针罗盘,航程远及波斯湾和东非沿海地区。1974年在福建省泉州湾出土一艘宋代海船残骸,船体瘦削,具有良好的速航性能和耐波性,船内有12道水密隔壁,船侧外壳板由三层杉木板组成,结构坚固,估计船全长约35米,载重量200吨以上。明朝初年,郑和曾率领庞大的船队于公元1405~1433年间七次远航,遍历东南亚、印度洋各地,远达非洲东海岸。据记载,郑和所乘“宝船”长44丈,宽18丈,有12帆,是当时世界上首屈一指的优秀帆船。 中国帆船的构造和欧洲帆船不同。欧洲帆船两端尖而上翘,中国帆船则两端用木板横向封闭而形成平底的长方形盒子。舵位于尾部中心线上,尾部造成楼形高台,以防止上浪。船内有多道水密隔壁,结构坚固。中国帆船的帆是横向用竹竿加强的“硬篷”。这种平衡纵帆,操作灵便,能承受各个方向的风力。15世纪时,中国帆船无论在尺度和性能上都处于领先地位。16世纪以后,欧洲帆船才逐渐超过中国帆船。 蒸汽机船时代 18世纪蒸汽机发明后,许多人都试图将蒸汽机用于船上。1807年,美国人R.富尔顿首次在“克莱蒙脱”号船上用蒸汽机驱动装在两舷的明轮,在哈德逊河上航行成功。从此机械力开始代替自然力,船舶的发展进入新的阶段。 早期的蒸汽机船 19世纪上半叶是由帆船向蒸汽机船过渡的时期。早期的蒸汽机船装有全套帆具,蒸汽机只是作为辅助动力。1819年美国人M.罗杰斯建造的“萨凡纳”号蒸汽机帆船,用了27天时间横渡大西洋,在整个航程中只有60小时是使用蒸汽机推进,其余时间仍用风力。在早期,蒸汽机安装在甲板上,驱动装在两舷的巨大明轮。1839年,第一艘装有螺旋桨推进器的“阿基米德”号船建成,船长38米,主机功率80马力。早期蒸汽机是安装在木帆船上的。1850年以后,逐渐用铁作为造船材料。1880年以后,钢很快代替铁作为造船材料。1876年英国建造的新船只有8%用钢材建造,而到1890年,则只有8%是铁船了。 “大东方”号蒸汽机船 1854~1858年英国人.布鲁内尔建造的“大东方”号铁船被认为是造船史上的奇迹。布鲁内尔第一个将关于梁的力学理论应用于造船,在船体建造上首创了纵骨架结构和格栅式双层底结构。双层底向两舷延伸直到载重水线以上,形成了双层船壳。上甲板也用同样结构以增加船体强度。“大东方”号长207米(680英尺),排水量27000吨,比当时的大型船大6倍。船内部用纵横舱壁分隔成22个舱室。船上安装两台蒸汽机,一台驱动直径56英尺的明轮,另一台驱动直径24英尺的螺旋桨,蒸汽机总功率8300马力,最高航速每小时16海里。船上有6根桅,帆总面积8747平方米(85000平方英尺)。它能载客4000人,装货6000吨。直到半个世纪以后才出现比它更大的船。“大东方”号尽管经营失败,但在造船理论和技术方面,却为现代钢船开辟了道路。 蒸汽机船的完善 早期蒸汽机船驱动明轮用的蒸汽机是单缸摇臂式,汽压也很低。19世纪80年代出现了三涨式蒸汽机,汽压提高到千克力/厘米2。此时明轮已为螺旋桨所代替,三涨式蒸汽机配合螺旋桨成为典型的动力装置。19世纪末,蒸汽机已发展到四涨式六汽缸,蒸汽压力提高到 千克力/厘米2,功率达到1万马力。高压水管锅炉也逐渐取代了苏格兰式火管锅炉。20世纪初,货船一般是用三涨式蒸汽机作主机,功率约2000马力,航速约每小时10海里,载重量增大到6000吨。航行于大西洋上的大型远洋客船,以往复式蒸汽机为动力,单机功率达到2万马力。 汽轮机船、柴油机船的问世 1896年,英国人C.帕森斯将他发明的反作用式汽轮机成功地应用于船上;同年,瑞典人C.迪拉瓦尔发明了冲击式汽轮机。进入20世纪以后,船用汽轮机不断改进,因为重量轻,功率大,旋转均匀和无往复运动部件等,普遍应用于大型高速船。至今,某些大功率船仍用汽轮机作为推进动力。1892年,德国人R.狄塞尔发明压燃式内燃机,即柴油机,20世纪初开始应用于船上。柴油机热效率高、油耗低,因而得到广泛应用。40年代末,柴油机船的吨位即已超过蒸汽机船。 油船和散货船的出现 早期的杂货船承揽一切货种的运输,包括散装的煤炭、谷物等和桶装的油类。1886年开始出现具有现代油船特征的船,也就是将货油直接装在分隔的油密舱室内并用泵和管系进行装卸。进入20世纪后,对石油的需求日增,油船逐渐形成一支专用船队。1944年最大的油船载重量为 23000吨。散货船略早于油船出现,但在20世纪上半叶由于港口装卸效率不高,发展缓慢,最大的载重量只有1万吨左右。第二次世界大战后,各工业国经济恢复,原料需求剧增,油船和散货船都向大型化发展。 大型远洋客船的兴起 19世纪70年代以前,运输船舶都是客货混装的。1870年,英国人S.丘纳德和T.伊士梅创办丘纳德汽船公司和白星汽船公司,在英国和北美之间航线上开辟旅行条件舒适的客船航班,豪华客船“海洋”号航行成功。此后各国相继建造大型豪华客船,航行于大西洋航线和东方航线上。80年代,已有载客千人以上,载重万吨以上,航速每小时超过20海里的豪华客船。20世纪30年代,大型远洋客船的建造达到高潮,如著名的“玛丽皇后”号、“伊丽莎白皇后”号和“诺曼第”号都是在这个时期建造的。它们的载重量都在 8万吨以上,主机为汽轮机,功率16万马力,航速每小时超过30海里。第二次世界大战以后,这一势头又恢复了,到60年代,因远程喷气客机的兴起才停止下来。大型远洋客船的建造,对造船科学技术的发展起了重要的推动作用,同时也使某些保障航行安全的法规逐步建立和完善。例如1912年“泰坦尼克”号海难事件导致了后来国际海上人命安全公约的签订。 柴油机船时代 柴油机船问世后,发展很快,逐渐取代了蒸汽机船。第二次世界大战结束后,工业化国家经济的迅速恢复和发展,国际贸易的空前兴旺,中东等地石油的大量开发,促使运输船舶迅速发展。1982年同1948年相比,船舶艘数增长了倍,总吨位增长了倍(见世界商船队)。船舶普遍采用柴油机推进。第二次世界大战期间,为了适应战时运输的需要,美国建造的2610艘自由轮(万吨级使用燃油锅炉和蒸汽机的杂货船)是最后建造的一批往复式蒸汽机远洋运输船舶。为了提高船舶运输的经济效益,船舶出现了大型化、专业化、高速化、自动化和内燃机化的多种趋势。 船舶大型化 首先是油船吨位的增长和油船的大型化。1930年的世界商船队中,油船吨位只占总吨位1/10,1980年上升为1/2。1983年初,各种油船的载重量达到亿吨。油船吨位的剧增主要在于油船大型化。50年代,3~4万吨的油船已被认为是 “超级油船”。60年代中期,就出现了20万吨以上的超大油船和30万吨以上的特大油船。70年代又出现了50万吨以上的大油船。石油危机发生和苏伊士运河恢复通航后,这种趋势已经停止,许多大型油船正面临拆毁的命运。在油船大型化的同时,也出现了装运煤炭、矿砂、谷物等的干散货船的大型化。60年代末,大型散货船的载重量超过10万吨,最大的已达17万吨。从50年代后期起,建造了能兼装原油和干散货的兼用船,如油散船和油散矿船等。 船舶专业化 第二次世界大战以后,各种专用船发展很快。杂货船用途广泛,适应性强,在艘数上至今仍占首位。典型的杂货船都以低速柴油机为动力,载重量不超过2万吨,航速每小时15海里左右。中国设计的“风”字号和“阳”字号货船都是典型的杂货船。为了提高杂货船运输多种货物的能力,近年制造出多用途船,除载运普通件杂货外,还能载运集装箱、重货、冷藏货和散货等。 水路集装箱运输于50年代中期兴起,1957年出现第一艘集装箱船。这是件杂货运输形式的重大变革。这种运输形式在货物包装、装卸工艺、码头管理和水陆联运等方面都有所突破。采用集装箱运输,可以大大缩短船舶停港时间,节约人力,保证货运质量和实现“门到门”运输。20多年来集装箱船发展很快。1982年全世界已有全集装箱船718艘,1294万总吨,分别占世界商船总数的1%和总吨数的3%。这种船船型瘦削,航速高,货舱内有导轨,甲板上有缚固设备,一般不设装卸设备,而是依靠港口专用设备进行装卸。 第二次世界大战后得到发展的重要专用船还有:装运液化天然气和液化石油气的液化气船;船上设有跳板,能使牵引车、叉车载货自驶上下的滚装船(又称开上开下船);以驳船作为运输单元,不需要停靠码头进行装卸而能实现江海直达运输的载驳船等。 远洋客船自从被喷气客机取代后,客船的性质已发生变化。60年代以来,旅游事业兴起,出现了一批定期、定航线,甚至环球航行的旅游船,为旅游者提供旅游、疗养、文化娱乐、社会活动以至海洋天文教育等综合性的服务。与此同时,在重要的短程航线上,还出现了一种吨位较小、除载客外还能携带旅客自备汽车的汽车客船。 船舶高速化 自50年代起,航运界为了加快船舶周转,一度掀起船舶高速化的热潮。普通杂货船航速提高到每小时18海里,集装箱船航速在每小时20海里以上,美国建造的“SL-7”型高速集装箱船,以两台6万马力汽轮机为主机,最高航速达每小时33海里。但从石油危机以来,燃料费在运输成本中的比重直线上升。迫使营运中的高速船纷纷减速行驶,新造船舶的航速也出现下降趋势。但是非排水型的高速客船,如水翼船和气垫船已应用于短途客运航线上,并日益发展。 船舶自动化 60年代初期以来,各国航运企业为了减少船员人数、改善船员劳动条件和提高船舶营运的经济效益,逐步实现了轮机、导航和舣装三个方面的自动化。如60年代中期造出机舱定期无人值班的船舶,已得到各国船级社的承认。 船舶内燃机化 船舶内燃机化是指船舶普遍采用柴油机为主机。柴油机同蒸汽机比较,具有热效率高、油耗低、占地小等优点。自从1911年造出第一艘柴油机海船以来,采用柴油机为主机的货船和客船日益增多。但到第二次世界大战结束时止,世界商船队中蒸汽机船仍占多数。战后,低速大功率柴油机由于增压技术的进步,单机功率不断提高,最大已达5万马力。过去必须安装汽轮机的大型高速船也能应用柴油机。另一方面柴油机对燃用劣质油的适应性也不断改善,这样在经济上便具有优越性。对于机舱空间受限制的滚装船、集装箱船、汽车渡船等,则可以选用体积小、重量轻的中速柴油机,通过减速箱来驱动螺旋桨。油耗低、能燃用劣质油的不同功率的柴油机现在几乎占领了船用发动机的全部市场。因此,第二次世界大战后的运输船舶发展阶段被称为柴油机船时代。
格桑之门
中小型船舶船体结构的缺陷补偿
摘 要:扼要分析和阐述了中小型船舶船体结构在装配过程中的缺陷,对难于采取返修的典型缺陷,提出了可以采取补强的可行性方案。
关键词:船体结构;结构强度;缺陷;补偿
船舶下水之前,造船厂检验部门将对船体结构(包括线型)进行全面的测量以及完整性的验收,以便将可靠的数据及有关资料提供给船级社和验船机构备查审核。鉴于船体是一个复杂的结构体,尽管在各道工序中实施了严格的管理措施以及按照工艺规程操作,由于工作量大,结构复杂,局部处施工条件差,因此仍免不了还会存在一定数量的缺陷。在这种情况下,采取适当的补强乃是保证船体结构局部强度的一种有效手段。下面就以实例来探讨缺陷的补强方法。
1 分段或总段对接处肋距超差
按照船体建造精度要求,对于已完成的分段或总段对接大接缝,心须测量其间的肋骨间距,并规定了极限误差值。因为一旦超差,将在一定程度上影响船体强度。一般可在大接缝区域适当位置增加中间肋骨或在相邻两肋骨间增设数道纵桁予以补强,对于局部偏差的,可在局部增设纵桁,但纵桁两端必须作必要延伸,以防止产生应力集中。
2 船体外表变形超差
船体外板线型平顺与否是衡量一艘船舶船体建造质量的标志之一。根据船体建造精度要求,规定了在一个肋距内或在一米长度范围内外板的不平度误差。船体外板的变形超差,最常见于线型变化曲率较大的艏艉部及相邻分段对接的大接缝区域。当然应首先考虑尽量利用工装夹具及冷热加工等措施矫正外板超差处的不平度。对于不平顺面积较小的外板,可按图1所示补强,图中表示了分段接缝处外板的缺陷及补强办法,如采用扁钢补强,则扁钢尺寸可取比肋骨型号略小的型材进行补强。
对于相邻肋骨间不平顺面积较大的外板,在不平顺处采用纵横向十字交叉结构的型材补强,纵横向型材的两端应分别削斜过渡。
3 外板上肋骨腹板与理论平面超差
对于中小型船舶的艏艉段,一般在胎架上以甲板为基准面采用反造法进行建造。这样在吊装肋骨框架定位时,如若肋骨框架稍有扭曲或定位时未与甲板上的中心线相垂直,这样就会造成肋骨腹板与外板连接后所形成的角度不符要求,焊后就称为肋骨腹板变形,对于由此形成的缺陷,由于结构空间狭窄,特别是在焊后很难矫正。所以选用肘板进行补强就显得既方便又实际。
4 船体结构节点构件连接尺寸超差
船体是一个复杂的结构体,船体内部构架密集,各种型式的构件纵横相交,形成了所谓结构节点。例如纵骨与肋板相交、龙骨与舱壁相交、横梁与纵桁相交等等。这些相交的结构节点,若在施工中因技术不熟练或稍有疏忽大意,就会造成节点处相交构件连接尺寸间隙过大,致使无法施焊,直接影响结构的刚度和强度。
A 横梁与肋骨相交处间隙过大
如图2所示,横梁与肋骨间间隙安装后为30mm。对于中小型船舶,船体建造精度要求中间间隙应在10~20mm之间,最大不得超过20mm。针对上述缺陷,可以考虑用割换一段肋骨来处理。但由于肋骨与舷侧板焊接已结束,动用割炬切割会使该区域舷侧板因受热而产生局部变形,同时由于肋骨多了一条对接缝,将影响肋骨本身的强度。故可考虑图2中适当加大肘板尺寸的办法予以补强,使肘板与肋骨相交的焊缝长度能满足原有焊缝长度的要求。
B 纵骨穿过构件处割空超差
对于中小型船舶,纵骨架式结构的底部和甲板,当纵骨穿过实肋板或横梁时,规范要求该节点处的纵骨腹板与实肋板或横梁应进行焊接。但往往因装配时划线有误,使切割后间隙过大,难于施焊,如图3a所示,为了弥补该缺陷,一般可采用与实肋板或横梁等厚度的补板予以补强,见图3b所示。补板尺寸可据该处纵骨大小而定。
C 龙骨与横舱壁相交处间隙过大
龙骨包括中内龙骨与旁内龙骨。龙骨与横舱壁均属主船体的主要结构,它们对一艘船舶的纵横向强度起着重要的作用,特别是中内龙骨,是纵向连续构件。在中内龙骨与横舱壁相交的节点处,由于偶然操作不慎在装配时将中内龙骨多割了一部分,使该处腹板及面板与横舱壁无法施焊,见图4a所示,此时,如果因此而将一段连续的中内龙骨割换,则不论对重新装焊还是在外观乃至质量上都将留有不足,如果该处多割的间隙不超过12~15mm,则采用加装垫板的方式进行补强就显得既方便又可行。见图4b所示,垫板厚度可比间隙小3~5mm,其尺寸视该处中内龙骨尺度具体选用。如若多割的间隙较大,那么就不能随意增加垫板厚度,否则该节点将形成为“硬点”。此时应考虑采用割换或其它工艺措施来消除其缺陷。
D 上层建筑扶强材根部与甲板间空隙过大
中小型船舶的上层建筑结构,一般在胎架上制成整体分段后,再在主甲板上进行定位吊装。施工中常见围壁上的扶强材根部与甲板间隙过大,见图5a所示,此时,可在扶强材根部与甲板间加装肘板来补强,见图5b所示。
以上列举的几例,是中小型船舶船体装配中比较典型的常见缺陷。当然,缺陷的形成也有工序间联系不够、管理不善、未遵循工艺要求,有时也有违章作业等原因所致。对船体建造中的各种缺陷必须针对具体问题作具体分析,对不同船型、不同结构型式的船舶提出不同的方案,决不能一概而论。同时在实际工作当中,要多积累经验,改进造船工艺,不断提高船舶的建造质量。
参考文献
[1]船舶设计实用手册[M].北京:国防工业出版社.1998,(12).
[2]华乃导主编.船体修造与工艺[M].大连:大连海事大学出版社,2000,(
哈哈,找现成的可解决不了问题的哦,学校有检测系统的,是过不了,还是整原创的。不会写可以找人代写的,花点钱,轻松过关很值的,还可以省下好多事。我的论文就是在一个叫
船舶与海洋工程结构极限强度分析论文 船舶的总体结构状态时一个非常复杂的过程。下面是我收集整理的船舶与海洋工程结构极限强度分析论文,希望对您有所帮助! 摘要: 当
我知道有家叫《船舶与海工杂志》,我订阅过,还不错,涉及到技术和市场这块的信息很多
船舶安全管理论文篇二 浅析现阶段船舶安全管理问题 【摘 要】 文章 从探讨船舶安全管理的重要意义出发,详细阐述了船舶安全管理的重要性
1、杨志勇,船舶自修讨论,中国水运,2001.12、杨志勇,轮机管理人员如何面对船舶现代化的挑战,武汉理工大学学报,2005.63、杨志勇,低质燃油对船用柴油机