• 回答数

    6

  • 浏览数

    227

多来A梦A梦
首页 > 医学论文 > 人工智能对医学论文

6个回答 默认排序
  • 默认排序
  • 按时间排序

坚持到底2011

已采纳

促进了医学的发展,将会改变医学的发展趋势,减轻医生的负担。

265 评论

伊泽瑞言

Catherine Le Berre 等 摘要 :自2010年以来,人工智能(A I)在医学上的应用取得了实质性进展。人工智能在胃肠病学中的应用包括内镜下病变分析,癌症检测,分析无线胶囊内镜检查中的炎性病变或消化道出血。人工智能还被用于评估肝纤维化,区分胰腺癌患者与胰腺炎患者。人工智能也可以根据多组学数据确定病人的预后或预测他们对治疗的反应。本文综述了人工智能帮助医生做出诊断或确定预后的方法,并讨论其局限性,了解在卫生当局批准人工智能技术之前需要进一步的随机对照研究。 关键词 :深度学习;机器学习;神经网络;消化系统

人工智能没有一个单一的定义,人工智能的概念包含了执行与我们人类智能相关联的功能的程序,比如学习和探索解决问题[1,2]。人工智能、机器学习和深度学习是概念上相互交叉的学科(见图1)。机器学习是一个包括了计算机科学和统计学的广阔学科,机器学习程序重复迭代以应对提高特定任务的性能,产生了分析数据和学习描述和预测模型的算法。供训练的数据大多以表格形式组织,其中对象或个人为行,而变量,无论是数值型还是分类型都是列。机器学习大致可分为监督方法和无监督方法,无监督学习的目的是在不掌握群体的数量或特性的先验知识的前提下,根据数据的共性识别群体。有监督学习在训练数据包含每一个对象的输入—输出对的表征的使用。输入包含个体的特征描述,输出包含要预测的感兴趣的结果,要么是分类任务的类,要么是回归任务的数值。有监督的机器学习算法学习这种输入和输出对的映射关系,在新的输出出现时,自动预测它对应的输出[3]。

人工神经网络(ANN)是受大脑神经解剖学启发的监督ML模型。每个神经元都是一个计算单元,所有神经元相互连接,建立整个网络。信号从第一层(输入)传到至最后一层(输出),可能经过了多个隐含层(见图2)。训练神经网络的过程包括将数据划分为一个训练集,该训练集有助于定义网络的体系结构,并找出节点之间的各种权重,然后是一个测试集,用于评估神经网络预测所需输出的能力。在训练过程中,神经网络内部神经元之间的连接权重被不断优化。对更好性能的不断追求导致了复杂的深度神经网络的诞生[4]。

大多数研究使用1个数据集训练机器学习过程,另一个独立数据集测试其性能。一些研究使用常见的验证方法,例如留一法交叉验证[8]。为增加训练数据,一些研究采用了随即裁剪、调整大小、平移、沿任一轴翻转的数据增强方法。数据集包括了阴性和阳性图像的结果。

目前已经有53项研究使用了AI来检测恶性和癌前肠道病变(表1)。从方法学上看,其中大部分(48项)集中在内镜上,3项研究使用了提取自电子病历的临床和生物学数据(主要包括人口统计数据、心血管疾病、用药情况、消化症状和血液计数情况),1项研究基于血清肿瘤标志物,1项使用肠道微生物群数据。从部位上看,其中,27项研究致力于提高结直肠息肉或癌症的诊断准确性[12-38].19项研究聚焦于诊断上消化道癌前或恶性病变[39-57]。只有4项研究局限于小肠研究[58-61]。3项研究关注了整个消化道[62-64]。从验证方法上看,其中,24项研究采用特殊的验证方法,主要是K折交叉验证。对于以内镜为重点的研究,训练和测试数据集的大小在不同的研究中差异很大。各项研究的性能表现也是差异巨大的(个人认为主要取决于数据集),但大多数算法的精度达到80%以上。 两项已发表的随机对照实验比较了智能与非智能内镜的性能。第一项研究测试了一种实时深度学习系统(WISENSE)的性能,监测食管胃十二指肠镜检查(EGD)中的盲点。一共324名患者被随机分配到有或者没有WISENSE系统的EGD中。在WISENSE组中,准确度达到了,其盲点率明显比对照组低( vs )[65]。第二项研究探讨了基于DL的自动息肉检测系统在结肠镜检查中的作用,一共1058名患者被随机分配到有或者没有智能辅助系统的诊断性结肠镜检查中。人工智能系统将腺瘤检出率从显著提高到,平均每个病人检出的腺瘤数目从增加到[66]。这些结果表明,人工智能系统可用于提高内镜对胃肠道癌前病变的诊断价值。 除了提高诊断准确性外,人工智能还可以帮助医生确定消化道肿瘤患者的预后。一个基于1219例结直肠癌患者的数据集建立的神经网络与传统的COX回归模型相比,提供了更精确的生存时间和影响因素的确定[67],并可用于确定患者远处转移的风险[68]。采用人工神经网络模型对452例胃癌患者进行评估,并以大约90%的准确率确定生存时间[69]。在一项对117例II A期结肠癌根治术后患者的研究中,一种基于神经网络的评分系统,根据肿瘤的分子特征,将肿瘤术后患者分为高、中、低危三组,三组患者十年总体生存率和无病生存率差异显著[70]。深度学习预测局部晚期直肠癌患者对新辅助化疗有完全反应的准确率达80%,这项技术可能被用来识别最有可能从保守治疗或根治性切除中受益的患者[71]。另外,一个基于DL的模型可以根据临床、病理数据及治疗方案,预测1190例胃癌患者5年的生存期。该系统的AUC值为,并确定了肿瘤的分子特征与最佳辅助治疗之间的关系[72]。

AI已经被用于识别炎症性肠病(IBDs)(N=6)[73-78],溃疡(N=6)[79-84],脂泻病(N=5)[85-89],淋巴管扩张(N=1)[90],和钩虫病(N=1)[91],两项研究评估了炎性病变患者的内镜检查结果[92,93]。两项研究使用电子病历来确定患者患腹腔疾病的风险,1项研究使用遗传因素来确定患者患IBD的风险。三分之二(21项中的14项)的研究使用K折交叉验证,以避免数据的过度拟合,这21项中有12项研究的患者的患者准确率约为90%。 许多研究已经验证了AI预测IBD患者治疗反应的能力。Waljee等人利用年龄和实验室数据研发了一种机器学习方法,这种方法的成本较低,且比6-硫鸟嘌呤核苷酸(6-TGN)代谢物测定更准确地预测患者对噻嘌呤的临床反应(AUC vs )[94]。然后,他们根据生物标志物、影像学数据和内镜检查结果,改进了之前的ML模型,以预测接受硫嘌呤治疗的患者的客观缓解。该ML模型优于6-TGN水平的测量(AUC vs )[95]。一种ML模型分析了韦多利单抗治疗溃疡性结肠炎患者的三期临床试验数据,与第6周AUC为的粪便钙保护水平相比。AI能够预测哪些患者将在第52周时在无皮质类固醇的前提下实现内镜下缓解,预测性能的AUC值为。因此,韦多利单抗在前6周的益处不明显时,该算法可用于选择患者继续使用韦多利单抗[96]。另外,还有一种人工智能算法,它将微生物群的数据与临床数据结合起来,确定了IBD患者的临床反应,其预测患者抗整合治疗的AUC为[97]。一种神经网络鉴定溃疡性结肠炎患者在细胞置换治疗后,需要进一步手术的敏感性和特异性分别达到了和[98]。 预测IBD发病或进展的人工智能系统也正在研发中。一种分析克罗恩病患者早期活检图像的神经网络在识别疾病进展的准确性达到了,预测患者需要手术的准确度达到了[99]。Waljee等人建立一种ML方法分析电子病历数据,预测6个月内IBD相关的住院和门诊病人使用类固醇的AUC值达到了[100]。人工神经网络预测IBD患者临床复发的频率,具有较高的准确性[101]。

十二项研究已经被用于验证AI在无限胶囊内镜图像中检测小肠出血的能力(表3)[55,102-112]。12项中的8项研究采用特殊的验证技术,主要是K折交叉验证。在这些研究中,9项研究识别小肠出血的准确率超过了90%。 对于急性上消化道出血或下消化道出血的患者,可通过内镜检查轻松确定出血原因,然而,很大一部分病人有反复出血的情况,这需要重复内镜检查和治疗。因此,ML模型被开发以确定有复发性出血风险的患者和最有可能需要治疗的患者,并估计死亡率。这些模型使用临床和/或生物数据,并以大约90%的准确率识别这些患者[113-117]。一种建立在22854名胃溃疡患者的回顾性分析和1265名用于验证的患者基础上的ML模型,能够根据患者的年龄、血红蛋白水平、胃溃疡、胃肠道疾病、恶性肿瘤和感染来确定复发性溃疡出血的患者。模型确定1年内复发性溃疡出血的患者,AUC为,准确率为。

22项研究测试了AI在辅助胰腺疾病或肝脏疾病诊疗中的能力(表4)。其中关于胰腺癌的AI系统有6项,其中5项研究基于内镜超声[118-122]、1项基于血清标记物[123]。这些研究识别胰腺癌患者的AUC约为90%。16项关于肝脏的研究中7项研究旨在检测与病毒性肝炎相关的纤维化[124-130],6项开发了人工智能策略检测非酒精性脂肪肝[131-136]。2项研究识别食管静脉曲张[137,138]。1项评估患者不明原因的慢性肝病[139]。其中,13项研究使用电子病历和、或生物特征的数据建立算法,3项研究使用弹性成像数据。除2项外,所有研究都使用了特定的验证技术 ,主要是k-折叠交叉验证。这些模型的精度约为80%。 除了提高诊断准确性外,还需要确定病人预后和预测疾病进展的AI方法。Pearce等人建立了一个ML模型,根据APACHE II评分和C反应蛋白水平来预测急性胰腺炎患者的严重程度。他们模型的AUC值达到了,敏感度87%,特异度71%[140]。Hong等人根据急性胰腺炎患者的年龄、红细胞压积、血清葡萄糖和钙水平以及尿素氮水平,创建了一个ANN来评估患者的持续性器官衰竭,准确率达[141]。Jovanovic等人开发了一种ANN模型,根据临床、实验室和经皮超声检查结果,识别胆总管结石病患者进行治疗性内镜逆行胰胆管造影术的需求,其AUC为[142]。 Banerjee等人开发了一种基于临床和实验室数据的人工神经网络,以90%的准确性确定肝硬化患者将在1年内死亡的可能性,该模型可用于确定肝移植的最佳候选者[143]。Konerman等人基于临床、实验室和病理组织学数据建立了一个机器学习模型,识别慢性丙型病毒感染肝炎患者疾病进展的最高风险,以及肝脏相关性结果(肝相关死亡、肝失代偿、肝细胞癌、肝移植或Child-Pugh评分增加到7分),该模型在1007名患者的验证集中AUC值达到了。Khosravi等人建立了一种神经网络来预测1168名肝移植患者的生存期。该模型可估计1-5年的生存概率,AUC为,而Cox比例风险回归模型为[146]。研究人员还利用人工神经网络将肝脏捐献者与接受者配对,从而提供强有力的决策技术[147]。此外,ML模型可以帮助预测对治疗的反应。Takayama等人建立了一种ANN预测慢性丙型病毒感染肝炎患者对聚乙二醇化干扰素a-2b联合利巴韦林治疗的反应,预测的敏感度达到了82%,特异度达到了88%。

人工智能将成为胃肠病和肝病学家诊断患者、选择治疗手段和预测预后的重要手段。许多方法都是在这些目标下发展起来的,并展示出不同的性能水准。由于性能指标的差异,很难比较这些研究的结果。人工智能似乎在内镜下特别有价值,它可以增加对恶性和癌前病变、炎症病变、小肠出血和胰胆紊乱的检测。在肝脏学中,人工智能技术可以用来确定患者肝纤维化的风险,并允许一些患者避免肝活检。 我们的综述只涵盖了PubMed中列出的文章,并且可能错过了计算机科学和医学图像分析期刊上的一些出版物。尽管如此,在过去的20年里,人工智能已经成为胃肠病学和肝脏学研究的重要组成部分。尽管本文的综述的重点是辅助诊断和预后,但是其他研究方向的人工智能也正在被探索,例如基于机器学习的内镜质控评估(盲肠标志,机器学习评估检测结肠镜的后续建议),AI在胃肠道领域的应用也在不断被扩大。 值得注意的是,目前的AI技术受的高质量数据集的缺乏所限制。大多数用于开发ML算法的证据来自临床前研究,目前在临床实践中没有应用。此外,DL算法被认为是黑箱模型,黑箱模型很难理解决策过程,阻止医生发现潜在的混杂因素。考虑道德挑战也很重要,人工智能不知道病人的偏好或法律责任。如果发生内镜误诊,谁有责任-内镜医生、程序员或制造商?此外,在确定与病毒性肝炎有关的肝脏纤维化风险时,种族歧视等固有偏置容易被纳入人工智能算法,特别是在肝脏学领域。在开发人工智能模型时,重要的是要考虑这些因素,并在一系列人群中验证模型。医学总是有内在的不确定性,因此完美的预测是不可能的,一些与人工智能相关的研究空白在胃肠学和肝脏学领域仍有待研究(表5)。 在胃肠病学和肝病学方面,人工智能的发展是没有回头路可走的,未来的影响是巨大的。使用人工智能可以增加在发展中地区的人们获得护理的机会,特别是在评估患者患病毒性肝炎或肠道寄生虫病的风险方面。智能手机可以使用人工智能技术远程监测患者的健康,IBD患者居家测量粪便钙保护素的方法已经被建立[149]。人工智能还可以通过从大型患者数据集中集成分子、遗传和临床数据来识别新的治疗靶点。然而,人工智能不会完全取代医生,人工智能仍将辅助医生工作。虽然机器可以做出准确的预测,但最终,医护人员必须根据病人的喜好、环境和道德为他们的病人做出决定。

226 评论

大坏蛋make

人工智能可以辅助医生诊疗,机器可以记忆大量的医学文献、病历资料、教科书、药物说明书、临床指南、影像图片及病理切片。帮助医生作出判断,在将来的临床工作中 , 如化验单诊断、病理诊断、或影像学诊断, 人工智能完全可以辅助医生诊断甚至可能替代医生进行独立诊断。人工智能可以帮助规范医疗行为,经验不足的医生或许能从人工智能系统得到学习及提高。

170 评论

2014兔兔

人工智能助力辅助诊断事实上,国外早已有科学家和医生正在利用人工智能来从海量数据,比如电子健康记录、影像诊断、处方、基因组分析、保险记录甚至是可穿戴设备所产生的数据中来提取有用信息,来为特定的一类人群而不是特定疾病来制定合理的卫生保健计划。最为知名的当属IBM的“Waston”医生。人的大脑的记忆容量和时间是有限的,难以记住并理解日新月异的医学研究论文和上万种疾病。但人工智能不同,它可以通过深度学习技术,可以不间断从大量医学书籍、电子病历等完善自己。然后通过认知分析技术,凭借从各种渠道搜集的海量数据,迅速给出“意见”,指导医生做出诊断和治疗决策,并且不会因为人的各情绪导致缺诊或误诊,同时患者能够更快速地获得医疗服务,而医疗机构也可节省成本。

334 评论

卷卷卷和毛

人工智能和类似技术可以加速疾病的诊断和早期发现。通过移动设备进行实时决策和与患者接触的能力可能会带来更好的结果。

312 评论

lifang88322

人工智能(AI)有可能显着改变医生的角色并彻底改变医学实践。这篇定性评价文章总结了过去12个月的人工智能健康研究,涉及不同的医学专业,并讨论了与这一新兴技术相关的当前优势和挑战。

医生,特别是担任领导职务的医生,需要了解人工智能在健康方面的进展速度,以便他们随时准备领导卫生系统采用所需的变革。关键点:“人工智能现已被证明在诊断各种疾病方面与人类一样有效,在某些情况下,更有效。”

在预测自杀未遂时,最近的研究表明AI比人类更好。“人工智能目前的优势在于能够从大型数据集中学习并识别可用于诊断病症的模式,使其与涉及模式识别的诊断测试中涉及的医学专业直接竞争,例如病理学和放射学”。AI目前面临的挑战包括法律责任和错误发生时的疏忽归因,以及与患者选择相关的道德问题。

人工智能系统也可以与需要识别和减轻的偏差一起开发或学习偏差。作为医生和健康领导者,我们需要开始准备专业,以便与AI合作,并在将来可能被AI和先进的机器人系统取代。将其与涉及模式识别的诊断测试的医学专业直接竞争,例如病理学和放射学。AI目前面临的挑战包括法律责任和错误发生时的疏忽归因,以及与患者选择相关的道德问题。

现在的人工智能发展到这样的水平,其实并不是基于医学上对大脑的工作原理掌握,目前医学上对大脑的工作原理知之甚少的。所以现在的人工智能是通过一条与人大脑工作原理不一样的途径发展起来的,而结果可以达到人脑工作的效果。

331 评论

相关问答

  • 人工智能在医学论文

    以医学为载体的人工智能论文可以投计算机期刊。计算机领域的期刊对于以医学为载体的人工智能论文也会有一定的接受度,而且随着人工智能技术在医学领域的应用逐渐普及,越来

    韭菜1975 2人参与回答 2023-12-11
  • 人工智能论文药学

    本文核心数据:区域竞争格局 上游减速器亚太地区资源丰富 根据Business Research Company 等公司的披露,2019年,亚太和欧洲地区已成为全

    听雨轩808 3人参与回答 2023-12-09
  • 人工智能的医学论文

    以医学为载体的人工智能论文可以投计算机期刊。计算机领域的期刊对于以医学为载体的人工智能论文也会有一定的接受度,而且随着人工智能技术在医学领域的应用逐渐普及,越来

    芳芳Flora 2人参与回答 2023-12-10
  • 人工智能医学杂志

    作为计算机科学一个分支,人工智能已经融入到我们生活中各个领域。比如华为智能系统的语音系统小艺、小米智能系统的人工智能小爱,这些都属于人工智能的语言识别。而在更多

    Rachelchel 5人参与回答 2023-12-11
  • 人工智能与药学论文

    首先,登录中国期刊全文数据库、万方数据库或者 维普数据库(此为中国三大专业文献数据库)或Pubmed/Medline等国外专业数据库,然后搜索相关的文献,写出您

    miss无敌 6人参与回答 2023-12-08