• 回答数

    4

  • 浏览数

    207

小马摩羯
首页 > 医学论文 > 医学论文里的卡方值

4个回答 默认排序
  • 默认排序
  • 按时间排序

兔兔水桶腰

已采纳

希望对你有用举例说明吧。相对于不做运动的女子,慢跑或快跑可能会对月经周期产生影响,那这种经期的变化是否会改变她们去咨询医生的频率呢?下面是一组统计数据,记录了三组运动状态的女子是否向医生咨询过经期变化的数据。Observed (O),观察值 是否向医生询问过 组 是 否 总数对照 14 40 54慢跑 9 14 23快跑 46 42 88总数 69 96 165简单点说,就是问,慢跑女子是不是会比不跑步的女子更频繁地向医生询问月经的问题?快跑相对于不跑呢?快跑相对于慢跑呢?方法如下:1. 计算每行和每列的总数,如上表所示。2. 计算每列的百分比,即询问过的百分比。在165个女子中,有69个询问过医生,即69/165=42%,那么没询问过医生的就是1-42%=58%。3. 如果跑不跑步,都不会影响询问医生的频率,那么这个询问过医生的可能性,42%,将适用于所有的组别,即在对照组的54个人中,我们预期54*42%=个人会去询问医学,而54*58%=个人不会去询问。用同样的方法把慢跑和快跑组是否会去询问医生的人数分别算出,如下表所示。Expected (E),预期值 是否向医生询问过 组 是 否 总数对照 54慢跑 23快跑 88总数 69 96 1654. 接下来就是要计算,这个预期值和实际观测到的值之间的区别大不大?是只是因为随机抽样产生的误差,还是具有统计学意义的显著性差异?计算公式如下:χ2=∑[(O-E)2/E]O为每个观察值,E为每个预期值在这个例子中,χ2=()2/()+…= 5. 计算自由度=(行数-1)*(列数-1)=26. 查表,自由度为2, p=时的值为,而比大,所以p<, 差异显著。7. 但由于有三个组,上述的值只能说明运动状态对于询问医生的频率有显著影响,却并不知道究竟是哪组跟组有显著差异。很多其他的回答到这里就结束了,其实不然。下面还有三点要注意。1. 接下来要做的就是把上面两个大表转换成亚表,首先只比较慢跑和快跑组 是 否 总数慢跑 9() 14() 23快跑 46() 42() 88总数 55 56 111计算χ2= ∑[(│O-E│-1/2)2/E]=注意当行列为2X2时,要用这个修正公式。自由度为(2-1)(2-1)=1,查表发现是个非常小的数,所以它们之间没有显著差异。而由于它们的差异如此之小,可以把它们合并成一个组,去跟对照不跑步的比较。组 是 否 总数对照 14() 40() 54跑步 55() 56() 111总数 69 96 165同理算得χ2=,大于自由度为1,p=时的值,即p<. 由于对同一数据做了两次测试(快跟VS慢跑,跑步VS对照),为了保证总的测试误差小于,这里不能用原始的p值来做结论,而需要对其做修正,比如使用Bonferroni修正:由于我们做了两次测试,所以用于比较的关键值要用*2=,由于原始p<,修正后的p (跑步VS对照)<, 差异显著。结论即为,快跑跟慢跑相比的女性相比,她们向医生询问经期的频率没有显著差异,而只要是跑过步的,她们询问的频率则显著高于不跑步的(55:56VS14:40)。3. 最后再补充两点使用卡方的条件1) 如果用于2X2,每个格子中的频数(O)都必须大于5。2) 如果是大型表格,许多行X许多列,每个格子中的频数都不得小于1,且它们中小于5的比较必须要低于20%。如果不能满足这两个条件,就要选择其他的统计方法来处理样本量比较小的情况,比如Fisher Exact test。

288 评论

胖子9451

四格表资料的卡方检验 四格表资料的卡方检验用于进行两个率或两个构成比的比较。 1. 专用公式: 若四格表资料四个格子的频数分别为a,b,c,d,则四格表资料卡方检验的卡方值=(ad-bc)2*n/(a+b)(c+d)(a+c)(b+d), 自由度v=(行数-1)(列数-1) 2. 应用条件: 要求样本含量应大于40且每个格子中的理论频数不应小于5。当样本含量大于40但理论频数有小于5的情况时卡方值需要校正,当样本含量小于40时只能用确切概率法计算概率。 行X列表资料的卡方检验 行X列表资料的卡方检验用于多个率或多个构成比的比较。 1. 专用公式: r行c列表资料卡方检验的卡方值=n[(A11/n1n1+A12/n1n2+...+Arc/nrnc)-1] 2. 应用条件: 要求每个格子中的理论频数T均大于5或1

119 评论

吃鱼的猫g

皮尔逊卡方值a在论文中描述卡方值。总计中的皮尔逊卡方即为卡方值,案例中为。卡方值越大,两种治疗的疗效有差别的可能性越大。P值的判定比较复杂。

353 评论

安哥拉天使

一、研究场景 卡方检验是一种假设检验的方法,它属于非参数检验的范畴,主要是用于分析定类数据与定类数据之间的关系情况。例如:分析性别与患病之间是否存在差异、性别与是吸烟之间是否存在差异性等。 二、SPSSAU操作 SPSSAU左侧仪表盘“实验/医学研究” → “卡方检验”; 三、卡方值的意义 卡方值表示观察值与理论值之间的偏离程度。计算这种偏离程度的基本思路如下。 设A代表某个类别的观察频数,E代表基于H0计算出的期望频数,A与E之差称为残差。 显然,残差可以表示某一个类别观察值和理论值的偏离程度,但如果将残差简单相加以表示各类别观察频数和期望频数的差别,则有一定的不足之处。因为残差有正有负,相加后会使彼此抵消,总和仍为0,为此可以将残差平方后求和 另一方面,残差大小是一个相对的概念,相对于期望频数是10时,期望频数为20的残差非常大,但相对于期望频数为1000是20就很小,考虑到这一点,人们又将残差平方除以期望频数再求和,以估计观察颍数与期望烦数的差别。 四、SPSSAU结果与指标解读 1.卡方检验分析结果其中A代表某个类别的观察频数,E代表基于H0计算出的期望频数,Ai为i水平的观察频数,Ei为i水平的期望频数,n为总频数,pi为i水平的期望频率。当n比较大时,χ2统计量近似服从k-1个自由度的卡方分布。 2.卡方检验统计量过程值3. 深入分析-效应量指标 4.多重比较结果 (1)第1次多重比较 (2)第2次多重比较 (3)第3次多重比较5. 趋势卡方检验 五、其他说明 1.卡方检验事后多重比较是什么意思? 医学研究模块里面的卡方检验方法时,SPSSAU默认提供多重比较功能,且SPSSAU仅针对第1个Y进行,可通过更换Y的位置实现其它分析项的多重比较,X或Y的选项个数大于10时不进行多重比较。 多重比较时,SPSSAU默认提供Pearson卡方检验值,多重比较时,检验次数增多会增加一类错误的概率,建议使用校正显著性水平(Bonferroni校正),比如如果显著性水平为,并且两两比较次数为3次,那么Bonferroni校正显著性水平为次=,即p值需要与进行对比,而不是。 2. 卡方检验出现多个卡方值和p值的原理? 如果卡方检验出现多个卡方值和p值,其原理和详细操作步骤说明如下, SPSSAU多个卡方值和P值处理 总结 如果研究中卡方检验表格出现多个卡方值和 p值,建议先理解表格里面是进行了卡方检验,还是卡方拟合优度检验,然后按 SPSSAU多个卡方值和P值处理 说明操作进行,最后在EXCEL表格中进行汇总整理表格即可。以上就是卡方分析的指标解读。卡方检验无论是在问卷调研或是医学实验中,都是非常实用高效的方法,没有展开说明的部分建议大家查阅SPSSAU帮助手册进行学习。 更多干货请前往 SPSSAU 官网查看。

352 评论

相关问答

  • 医学论文卡方值怎么算

    及第三方会的12。 最小理论频数是行最小×列最小 故为71×56除以143 卡方检验统计样本的实际观测值与理论推断值之间的偏离程度,实际观测值与理论推断值之间的

    小树小树小树 2人参与回答 2023-12-05
  • 用卡方检验的医学论文

    医学毕业生毕业论文2篇 在西学东渐背景之下,我国医学开始了近代化进程。下面是我为大家整理的本科医学毕业论文,供大家参考。 摘要:目的:评价问题式教学法(PBL)

    烟圈缠绕0 3人参与回答 2023-12-08
  • 斯里兰卡医学杂志

    柳叶刀杂志,应该是影响最大,最权威的医学杂志吧

    麻酥酥Jessica 4人参与回答 2023-12-09
  • 医学论文t值和卡方值

    关于你提的这个问题,我要很庄重的告诉你,我不知道哦,哈哈……

    了无痕Sky 4人参与回答 2023-12-07
  • 医学论文里的p值

    采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据

    大尾巴狼外婆 5人参与回答 2023-12-11