桃色蔷薇
大家好,这里是发现了最新新闻后突然嚣张的深空小编。今天天气不错,正适合读读最新资讯放松一下。据外媒报道,由澳大利亚研究人员领导的一项新研究让人们进一步了解了一种新型的超声技术如何帮助治疗阿尔茨海默病的。研究结果描述了聚焦超声是如何削弱阿尔茨海默病患者脑细胞中的血脑屏障,这可能会改善治疗该疾病的药物的吸收。血脑屏障是一种半透明的屏障,它在脑部血管中划线,重要的是保护脑组织,但这种保护功能也阻止了针对脑部疾病的药物和疗法的吸收,来自QIMR Berghofer的项目首席研究员Anthony White解释道。研究人员多年来一直在探索阿尔茨海默病与血脑屏障之间的关系,早期的动物研究显示,聚焦超声可能有助于大脑清除与神经变性相关的有毒蛋白团块。这项新的研究为研究这些类型的超声脉冲如何影响阿尔茨海默病患者脑部血脑屏障提供了一个高度具体的调查。我们的研究是第一次研究如何破坏人类患者的血脑屏障细胞,以改善阿尔茨海默病疗法的吸收,White说,我们的研究是建立在之前的研究基础上,探讨了超声技术是否可以用来减少小鼠和其他动物模型的大脑中淀粉样蛋白堆积。这项新研究从患有罕见的基因突变的患者中提取了人类诱导多能干细胞,这种基因突变使他们极有可能患上阿尔茨海默病。然后研究人员将这些iPSCs诱导成脑内皮细胞,作为易患阿尔茨海默病的脑部血脑屏障的模型。随后的超声治疗首先将脂质微泡注入细胞中。当这些微气泡暴露在聚焦的超声波下时,它们会对血脑屏障产生微小的、暂时性的破坏。然后研究人员可以将这些效果与从健康的iPSCs中提取的脑内皮细胞进行对照。有趣的是,研究人员发现,与健康的脑细胞相比,超声治疗对阿尔茨海默病脑细胞的破坏作用更大。治疗在所有患者的血脑屏障的单层中产生了开口,但健康对照组的脑内皮细胞比阿尔茨海默病患者细胞更快地自我修复,新研究的第一作者Lotta Oikari说。阿尔茨海默病患者的血脑屏障修复速度较慢,说明他们对药物和治疗的接受时间会更久,脑超声治疗可能要根据患者的疾病类型不同而进行不同的调整。目前研究人员正在进行临床试验,分析聚焦超声技术治疗阿尔茨海默病症状的安全性和有效性。而且,这项研究在肯定这种新技术的潜在益处的同时,也表明不同类型的神经退行性疾病会导致超声治疗以高度疾病特异性的方式影响血脑屏障。这项新研究发表在《干细胞报告》杂志上。欲要知晓更多《新研究显示超声技术如何被用于治疗阿尔茨海默病 》的更多资讯,请持续关注深空的科技资讯栏目,深空小编将持续为您更新更多的科技新闻。本文来源:深空游戏 责任编辑:佚名王者之心2点击试玩
小耳朵累了
摘要 衰老与认知过程和大脑神经生理学的改变有关。虽然遗忘性轻度认知障碍(aMCI)的主要症状为与较同等年龄和教育水平的人表现出记忆问题,但阿尔茨海默病(AD)患者除了记忆功能障碍外,还表现出其他认知方面的障碍。生理衰老的静息脑电图(rsEEG)表现出整体上低频振荡功率增加,alpha波活动减少和减缓。然而,AD的rsEEG主要表现为慢振荡增加,快振荡减少,以及大脑功能连接受损。最近对啮齿动物的研究,在静息脑振荡中与年龄和AD相关的变化,和通过gamma波段刺激的大脑刺激技术的神经保护效应同样存在于人类中。总之,目前的研究集中于优化rsEEG特征,将其作为aMCI患者转换为AD患者的预测因子,并了解脑刺激治疗后的神经变化。本文综述了生理衰老、aMCI和AD中rsEEG振荡变化的最新研究,以及来自人类和非人类研究的各种脑刺激发现。 1.引言 与年龄相关的认知能力下降或正常的认知能力减退会导致大脑结构和功能改变,这些改变是非病理性的,在正常年龄范围内。轻度认知障碍(MCI)的特征是较同等年龄、性别和教育水平的正常人群的认知能力下降,但不明显干扰日常生活活动。有研究表明,65岁以上的成年人中MCI的患病率在3%-19%之间,约60%在五年后发展为痴呆。aMCI和非aMCI患者间的主要区别在于情节记忆方面(即学习和保留新信息的能力),其他认知功能几乎相同。 AD是一种发展的精神障碍,占痴呆的60%-80%。AD的形态学特征包括淀粉样β(aβ)肽的细胞外沉积、过度磷酸化tau蛋白的细胞内神经纤维缠结(NFTs)的形成、神经斑块以及大脑皮层和海马中大量的神经元和突触丢失。有研究表明,对Aβ、tau、αβ42和tua的脑脊液(CSF)水平的测量以及对脑灰质体积的磁共振成像(MRI)测量是AD诊断的主要生物标志物。 AD早期认知障碍的最佳解剖学关联是突触功能障碍。在现有的探索脑生理和病理老化的方法中,脑电图和脑磁图能直接在突触水平上反应脑电活动。有证据表明静息态脑电图/脑磁图(rsEEG/MEG)能有效的作为神经退行性变和从aMCI向AD转化的非侵入性预测生物标志物。本文主要回顾了人类静息态脑振荡中与年龄和AD相关改变的最新研究;在脑刺激治疗后,AD患者脑振荡和认知状态发生变化的研究;在AD啮齿动物模型中静息态和长期gamma波段刺激后脑振荡改变的新发现;并为未来的实验和临床研究提出方向。 2.静息态脑振荡 将脑振荡作为EEG/MEG记录的共同特征的研究对理解神经交流和皮层连通性起重要作用。由EEG/MEG和局部场电位(LFPs)记录的神经元反应可以在时域中表征以研究事件相关电位/场,或在时频域中表征以研究振荡活动。研究表明,随着认知需求(如注意力、期望、学习和感知)的增加,尤其在gamma波段(即30-70Hz),诱导反应增强。最近有证据表明虽然evoked和induced反应可能反映不同的神经元过程和机制,但又可能存在共同的机制。 脑振荡在微观尺度上调节神经元尖峰的时间,并在宏观尺度上同步分布式皮层网络间的通信。在各种时间和空间尺度内观察到的神经活动节律传统上分为:delta(1-4Hz)、theta(4-8Hz)、alpha(8-12Hz)、beta(15-30Hz)、gamma(30-90Hz)和high gamma(>50Hz)。这些振荡在神经交流和许多认知过程中起重要作用(图1)。然而,许多不同的认知过程不能直接与这五个脑振荡联系起来。闭眼时的rsEEG包括前额叶的大范围低频delta波活动,额中央区小得多的theta波活动,前后区的alpha1()活动,后区的alpha2(10-12Hz)和beta1(13-23Hz),和前额区的高频beta2(24-30Hz)和gamma波活动。研究表明,两个远距离脑区中的相干EEG振荡反映了它们的功能协作。慢频振荡显示了远脑区大规模神经元网络的协同活动,而高频振荡反映了附近皮层区域局部神经元群体的活动。 大量研究表明,事件相关EEG/MEG振荡和各种认知过程间存在功能联系。在事件相关电位(ERPs)中,delta波振荡与广泛的神经网络区域有关(通常在额叶和扣带皮层),且可能具有抑制作用。这种关联反映了通过参加一种刺激而抑制其他刺激来实现认知(如注意力)。Theta振荡通常和记忆和执行功能有关,主要出现在额叶皮层,而抑制性调节其他皮层。Alpha振荡代表记忆和注意力过程,并对与任务无关的脑区进行功能抑制,将信息传到与任务相关的区域。参与脑区的主动处理也与gamma波段的神经元同步及alpha波段的减少有关。这些与处理潜在注意力的信息相关的节律变化表明,脑网络在gamma和alpha活动间存在具有跨频率的交互作用。然而,beta振荡的调控很大程度上与运动有关的活动相关,包括运动观察、想象和执行,以及与感觉运动交互有关的认知过程。总之,低频振荡与功能抑制有关,而较快的gamma波振荡代表皮层激活。 图1 人脑中的脑振荡分布。在健康大脑中,振荡被分为特定频带,包括delta、theta、alpha、beta和gamma,具有不同功能。 3.人衰老中的静息脑振荡 大脑网络响应不同的环境或外部刺激而动态改变,并表明了学习、认知功能、生理衰老和精神疾病的影响。衰老的特征是静息态下脑波频率、功率、形态和分布改变。生理衰老表现出delta和theta频率范围的功率增加、alpha活动幅度明显降低、背景活动减缓(显性alpha振荡),且在alpha波段,尤其是额叶脑区动态相位同步的复杂性增强。与年龄相关的theta功率增加与脑脊液的total-tau(t-tau)和phosphorylatedtau(p-tau)水平及p-tau/A42比值有关,尤其在脑后部区域。随着年龄增长,运动皮层中基线功率增加,这是因为兴奋-抑制回路和该脑区与年龄相关的神经可塑性间的平衡发生了变化。 患者中的静息脑振荡 通过分析AD患者的静息EEG/MEG,发现快振荡(alpha、beta、gamma)减弱和慢节律(delta、theta)增强(图2)。 图2 展示了对aMCI、AD和同龄对照组的rsEEG频谱分析,包括delta、theta、alpha、beta1和beta2振荡。 几种神经递质系统有助于皮层振荡的产生和同步化。如,GABAergic神经元在高频振荡的初始产生及其局部同步(如beta和gamma节律)中起重要作用。尽管脑神经递质系统在AD的神经元同步性和病因学中发挥着重要作用,但只有少数研究解释了神经振荡、脑神经递质和认知能力改变间的联系。 .脑振荡改变的临床相关性 当前的研究集中于将对rsEEG的研究作为识别aMCI患者转化为AD患者的预测因子。研究证实,rsEEG可能用于区分各种类型的轻度认知障碍或区分aMCI或AD患者与同等年龄对照组。如,研究表明,非痴呆淀粉样蛋白阳性患者的脑振荡活动减慢(即delta和theta功率增加以及alpha功率和峰值降低)与AD的临床进展有关。与对照组相比,患有AD或帕金森病的MCI患者(PD-MCI)的alpha源的后半球间和半球内连接表现出异常和较低。 根据AD连续体模型,即从主观认知衰退(SCD)经MCI到痴呆的转变,研究表明1)CSF的A42减少和/或t-tau和p-tau蛋白水平增加,2)淀粉样蛋白增加,3)MRI识别脑萎缩,4)与同龄人相比,由FDG-PET测得的葡萄糖代谢降低发生认知能力下降和AD的风险更高。最近一项关于患SCD、MCI和AD的研究,发现delta和theta全局场功率(GFP)增加与全局场同步降低(GFS;整个头皮振荡神经元网络的瞬时锁相同步的全局量)与较低的CSF A42和较高的p-tau和t-tau水平间存在显著相关性。这些发现说明rsEEG是AD的早期非侵入性生物标志物。 .脑振荡与认知状态间的相关性 研究表明,皮层rsEEG振荡异常与aMCI和AD患者的体积皮质神经变性和认知测试分数有关。如,对MCI和AD患者的研究表明,较低的皮质灰质体积和较高的delta和较低的alpha1源间的关系,MMSE评分与皮质灰质体积间的联系,及枕骨alpha1振幅与枕骨灰质密度和MMSE评分间的联系。图3A展示了delta波段大脑功能连接和行为认知功能间的关系。研究还表明增加的theta/gamma比值和alpha3/alpha2比值与转换为AD和记忆测试分数较低间存在联系。 .图论分析和大脑功能连接 研究表明,AD患者认知受损与脑网络分布相关。从图论角度出发,大规模功能性脑网络是一个复杂的系统,具有小世界特征(即在局部专业化和全局整合间具有最佳平衡网络)、节点分布和连接、层级结构、中心性和模块化等。在AD研究中,对rsEEG/MEG数据进行图论分析,得到脑区间的功能连接减弱,小世界属性网络减弱,以及大脑脆弱性增加(图3B)。研究表明,AD中局部和全局连接参数的减少导致大规模功能脑网络组织从最佳小世界网络朝随机类型发展。这种脑网络拓扑结构的改变导致脑区间的交互效率降低,从而证实了AD的不连通性。 图3 A)对delta波段的脑功能连接和认知状态进行eLORETA相关分析。A1)MT区的上下左右方向。A2)AD患者和同龄对照组,MT区域的delta滞后相位同步与MMSE评分间显著正相关(r=,p<)。B)对AD的功能连接进行图论分析(LPVG和Phase space analysis)。两种方法都证实了AD患者脑区间的连接减弱,尤其在alpha波段。 波段振荡 在清醒和睡眠期间,通常在许多脑区观察到gamma振荡,包括新皮质、内嗅皮质、纹状体、嗅球、丘脑和其他脑区。Gamma振荡活动有助于人类认知功能,如注意力、感知、物体识别、记忆过程、面部识别和情绪范式,gamma同步是许多脑功能的基本过程。研究表明,AD患者较同龄对照组,静息态gamma功率/同步和延迟gamma响应降低,及gamma波段功率或连接性(即跨频耦合,CFC)增加。GABAergic中间神经元网络分布引起gamma波功率增加,导致中枢神经系统(CNS)兴奋和抑制间的不平衡。AD患者中beta/gamma和低频段间CFC强度增强,反映了同步性增加,同样表明神经元网络的复杂性减弱,需要更多的神经资源来维持大脑静息状态。Gamma频率范围、测量技术(即功率、相干性、同步性等)、疾病的严重程度和AD患者的药物治疗状况等研究方法或许会导致差异。 5.对AD患者进行脑刺激 侵入式gamma波段刺激 深度脑刺激(DBS)是几种慢性疾病(如,PD、原发性震颤、强迫性惊厥障碍(OCD))和医学上难治性癫痫的成熟治疗方法。DBS是一种侵入性神经调节外科技术,包括植入式脉冲发生器对特定脑区进行慢性电刺激。研究表明,DBS通过增强突触可塑性调节局部神经元活动和刺激神经元回路的重组。有研究表明,DBS是调节AD记忆的潜在工具。目前一些研究已对穹隆(130Hz)、内嗅皮层(50Hz)和Meynert基底核(20-50Hz)进行刺激。 大量研究证实穹隆的变化可能是MCI和AD诊断的生物标志物。如,AD的MRI volumetric研究表明包括穹隆在内的边缘叶结构萎缩。穹隆作为海马体、下丘脑乳头体和丘脑前核间的连接体(图4B)。穹隆的选择性损伤会导致顺行性遗忘,即形成语义和情节记忆。 研究表明,对穹隆进行DBS刺激()有助于提高记忆,与应用频率无关。对六名AD患者进行双侧穹隆DBS刺激(130Hz,),内嗅区和海马区在内的记忆回路中的神经活动增强。然而,在该实验的第二阶段,12个月时对42名轻度AD患者进行随机双盲实验,结果不存在显著性差异。总之,还需要认真设计对照实验进一步阐明DBS效应背后的神经机制及其对AD患者的刺激疗效。 非侵入式gamma波段刺激 在精神疾病中常用的非侵入式脑刺激技术中,电流刺激和经颅磁刺激(TMS)是最成熟的方法。经颅电流刺激(tCS)是一种亚阈值神经调节技术,包括直流电刺激(tDCS)和交流电刺激(tACS)。从理论出发,只要是由于大脑振荡的记忆功能(如记忆力、智力和创造力)都可以通过tCS进行调节(图4A)。使用tACS调节gamma振荡导致gamma振荡(即40-120Hz)部分增加,并改善了MCI患者的一些神经心理学测试,而在AD患者中不存在该现象。研究表明,在调节额顶叶网络的gamma振荡时没有得到改善的MCI患者转换为AD的风险更高。 对于TMS,一个短而强的磁场穿过颅骨,对皮层神经元进行集中有效的刺激并引发动作电位。研究表明,轻度AD患者的感觉运动系统深度重排和过度兴奋,并没有明显的运动表现,这与疾病的严重程度和发展有关。重复经颅磁刺激(rTMS)在一段时间内以高()或低()频率传递的几个脉冲序列,可以调节神经活动和大脑兴奋性。对AD的随机对照实验(RCT)结果表明,对背外侧前额叶皮层或多个脑区进行高频rTMS,认知状态有所改善,但对情绪和功能表现没有影响。 图4 大脑电刺激 音乐刺激 对成年人进行音乐刺激,有助于唤起记忆和情感能力。研究表明,适量的早期音乐训练,能促进老年人的认知能力保持持久。音乐疗法还可以用于治疗痴呆的破坏性行为和焦虑,以及认知功能、抑郁和生活质量。音乐可以刺激大脑振荡并改善神经元放电的同步性。如,愉快的音乐可以增强整体EEG功率,尤其是在右额叶和颞区的beta和alpha频段。虽然大多行为研究证实了音乐对增强大脑/认知储备的有效性,但由于缺乏神经生理学和神经影像学研究,难以将音乐疗法与年龄相关的认知衰退和痴呆症结合。因此,还需设计实验,来探究声音节奏是如何在神经持续刺激中起作用,并促进健康和疾病中的大脑可塑性。 老鼠模型中的静息EEG节律 和人类研究一致,老鼠的rsEEG随年龄和AD变化。如,研究表明神经元连接早期改变和theta-gamma解耦加强、delta和theta功率增加、beta和gamma功率减少以及EEG频带功率普遍降低。 神经振荡由包括动作电位和LFPs在内的神经活动记录的周期性变化表示。在啮齿动物LFP研究中,海马体表现出不同类型的大脑振荡,包括theta振荡(~4-12Hz)、gamma振荡(~25-100Hz)和尖波波纹(SWR)复合物(~110-250Hz波纹叠加在~尖波上)。对健康的啮齿动物和人类研究发现,在海马体和EC中存在与theta振荡的特定相位的强gamma振荡,称为theta-gamma CFC。海马theta-gamma CFC强度与任务需求有关。海马接收来自EC的皮层输入。内侧皮层(MEC)处理空间信息,而外侧皮层(LEC)通常与嗅觉输入相关,二者在AD早期受到影响。 在淀粉样前体蛋白(APP)转基因动物中,A通过嗅觉回路沉积,导致神经元萎缩、树突异常、突触丢失和轴突变性。有研究表明,在AD小鼠的beta振荡中,无论是在静止状态下还是在气味诱发活动期间,两个嗅球的LFP间的相干性被显著破坏,主要是由A依赖受损的神经传递以及突触和神经元的缺失引起的(图5)。对人类的研究证实嗅觉系统的功能障碍是识别和检测AD疾病的主要标志之一。研究表明在疾病早期阶段,可溶性A寡聚体破坏了突触兴奋和抑制的平衡,改变了局部神经回路和大规模网络的功能。然而,gamma振荡损伤优先于A病理的机制还不清楚。因此,AD小鼠模型中的gamma振荡受损与人类AD的相关性还需进一步研究。 图5 同时记录12-13个月大的WT(野生型)和APP/PS1老鼠。 动物中的gamma波段刺激 最近的LFP研究通过调节神经元和神经胶质的反应来减弱AD样神经病理学,阐明了gamma振荡在信息处理中的作用。研究表明,通过对AD大脑进行gamma刺激和神经元活动节律重组可以打破神经回路中的兴奋和抑制间的不平衡。对多种AD小鼠模型的研究证实了30-40Hz感觉或磁刺激对神经元和小胶质细胞的神经保护作用,有助于改善AD相关的神经病理学和认知障碍。如,应用40Hz听觉刺激导致5XFAD小鼠听觉皮层和海马A负荷减少,小胶质细胞、星形胶质细胞和脉管系统发生明显变化,空间和识别记忆得到改善。研究发现EC的高频DBS(130Hz)可改善TgCRND8小鼠的空间记忆缺陷并降低A负荷。相较于年轻小鼠,DBS不会降低成年老鼠的A负荷。这一发现表明,DBS可能仅在AD早期通过斑块依赖机制发挥作用。 8.结论和未来方向 本文重点介绍了MCI和AD中rsEEG振荡改变的最新研究、MCI转化为AD的rsEEG预测因子、对AD患者进行脑刺激的结果和潜在机制、与AD相关的rsEEG振荡变化,和在AD啮齿动物模型中进行gamma波段刺激的研究。总之,目前对人类的研究证据证实了应用rsEEG作为辨别aMCI转化为AD的可靠预测因子,并使用各种脑刺激方法后得到神经变化。最近对啮齿动物LFP研究也与人类脑电图的发现一致,确定了gamma波段刺激在改善AD相关记忆障碍和神经病理学方面的神经保护作用。 DBS gamma刺激对AD患者的治疗结果是不确定的。虽然DBS的作用机制不清楚,但对AD啮齿动物模型的研究表明了几个潜在机制,如斑块减少和成年海马神经增强、局部神经元激活或抑制、神经传递的调节、中断的回路活动的恢复或大脑活动的同步化。未来的研究需要进一步阐明AD的gamma波段DBS的神经生理学基础。 虽然动物研究通常表明AD模型中静息态gamma振荡减少,而人类研究表明AD患者gamma波同步化减少和gamma活动增加。关于AD病因,转基因啮齿动物模型通常再现与家族性AD病因相关的主要特征。一项关于可改变风险因素对痴呆影响的研究表明,中年听力损伤、早年受教育较少、吸烟、抑郁、缺乏运动、社会隔离、高血压、肥胖和糖尿病表现出较大的影响。然而,研究表明,这些因素也会影响老年人的rsEEG,并有发展成为认知下降和AD的风险。
这代表着阿尔茨海默病是可以被发现的,是我国医学的又一大进步,从今以后能够有更多的实验数据和这个病的研究方向。
传统的认知中,女性更容易患阿尔茨海默病。但最新的科学研究结论改变了这一定论!一、流行病调查影响了人们的认知。科学家们仍未弄清为什么阿尔茨海默病对男性和女性的影响
1990年毕业于天津医科大学,获硕士学位;2000年毕业于山西医科大学,获博士学位;2003年9月至2006年1月在美国Pennsylvania State U
在前几天的时候Science 发布了一个历时6个月的调查报告指出美国明尼苏达大学,神经学家发表的20多篇论文当中,可能存在学术不端的行为,这些论文当中就包括了N
一个人在有老 年 痴 呆 症状的前34年,大脑其实就有了变化!日前,美国约翰·霍普金斯大学的研究人员对290名40岁以上志愿者进行追踪研究发现:在老年 痴呆 症