是淡淡的忧伤啊
t检验,也称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。t检验是戈斯特为了观测酿酒质量而发明的,并于1908年在Biometrika上公布。下面我们主要从下面四个方面来解说:实际应用 理论思想 操作过程 分析结果 一、实际应用 在统计分析中,要检验两个相关的样本是否来自具有相同均值的总体;或者检验两个有联系的正态总体的均值是否有显著差异等。例如医学界研究一种药物对某种疾病的疗效;学生性别对身高的影响;一种化学药剂对作物害虫的杀虫效果等。T检验的主要用途: 单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内双样本检验:其零假设为两个正态分布的总体的均值是相同的。 这一检验通常被称为学生t检验。但更为严格地说,只有两个总体的方差是相等的情况下,才称为学生t检验;否则,有时被称为Welch检验。检验同一统计量的两次测量值之间的差异是否为零。检验一条回归线的斜率是否显著不为零。二、理论思想 T检验是一种处理2个总体间计量变量比较方法, 用 t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。 T检验有3种类型:单样本 T 检验 检验一个样本平均数与一个已知的总体平均数的差异是否显著。独立样本 T 检验 检验两个样本平均数与其各自所代表的总体的差异是否显著。两个样本组之间毫无相关存在,即为独立样本。配对样本 T 检验 检验两个样本平均数与其各自所代表的总体的差异是否显著。两个样本组之间存在相关,即为非独立样本。三、操作过程 T检验的数据条件: 来自正态分布总体。 随机样本。 方差齐性。 均数比较时,要求两样本总体方差相等,即满足方差齐性。 如果不满足这些条件,可以采用校正的 t 检验,或者换用非参数检验代替 t 检验进行两组间均值的比较。 独立样本 T 检验案例: 题目:甲、乙两所学校各40名高三学生的高考数学成绩。试用独立样本T检验方法研究两所学校被调查的高三学生的高考数学成绩之间有无明显的差别。 一、数据输入 二、操作步骤 1.进入SPSS,打开相关数据文件,选择“分析”|“比较平均值”|“独立样本T检验”命令 2.选择进行独立样本T检验的变量。在“独立样本T检验”对话框的左侧列表框中,选择“高考数学成绩”进入“检验变量”列表框。 3.选择分组变量。在“独立样本T检验”对话框的左侧列表框中,选择“学校”进入“分组变量”列表框。然后单击“定义组”按钮,其中“组1”“组2”分别表示第一、二组类别变量的取值。在“组1”中输入1,在“组2”中输入2。4.置信区间和缺失值的处理方法。单击“独立样本T检验”对话框中的“选项”按钮,在“置信区间百分比”文本框中输入“95”,即设置显著性水平为5%。在“缺失值”选项组中选中“按具体分析排除个案”单选按钮,单击“继续”按钮,返回“独立样本T检验”对话框。5.其余设置采用系统默认值即可 6.单击“确定”按钮,等待输出结果。四、结果分析 1. 数据基本统计量表参与分析的样本中,甲组的样本容量是40,样本平均值是,标准差是,标准误差平均值是;乙组的样本平均值是,标准差是,标准误差平均值是。 2.独立样本T检验结果表F统计量的值是,对应的置信水平是,说明两样本方差之间不存在显著差别,采用的方法是两样本等方差T检验。T统计量的值是,自由度是78,95%的置信区间是(,),临界置信水平为,远小于5%,说明两所学校被调查的高三学生的高考数学成绩之间有着明显的差别。分析结论: 综上所述,T检验检验结果拒绝原假设,说明两所学校被调查的高三学生的高考数学成绩之间有着明显的差别。 (获取更多知识,前往wx 公z号 程式解说) 原文来自
小顽童阿淑
大家好,欢迎来到MedSPSS小课堂。
上几期内容,我们分享了位置检验中的单样本t检验、独立样本t检验的使用案例。本期内容,我们为大家带来位置检验中使用较多的 配对样本 t 检验 使用案例。
配对样本 t 检验
1. 概念
配对样本t 检验(paired t test):用于配对计量资料均值的比较,以检验两组配对样本均值所代表的未知总体均值是否有差异。
2. 用法
用于配对定量资料之间的差异对比,可用在很多研究领域,如:
3. 使用条件
4. 案例描述
对38名高血压患者进行非药物干预实验。实验开始前,高血压患者连测三天血压,每天测一次,将最高的一次作为干预前的血压记录。通过对患者加强非药物干预(加强有氧运动、低钠低脂饮食、全面生活方式改变),三个月后随访时以同样的方式再次测量患者的血压。
那么通过三个月的非药物干预,患者的血压显著降低了吗?
5. 案例分析
通过干预前后患者的血压数据,采用配对样本t检验,比较干预前后患者收缩压(SBP)的均值。如果非药物干预对降压无效果,理论上前后血压数据应该基本一致,即干预前后血压的差异不显著。
6. 基于 MedSPSS 案例分析步骤
以下通过MedSPSS的 配对样本 t 检验 来验证干预前后血压的差异情况。
Step1 :上传数据
操作步骤: 基于 MedSPSS,通过【数据管理】-【文件】-【上传文件】,上传整理好的“高血压干预前后数据”,用作接下来的配对t检验。
Step2 :配对样本和配对差值正态性检验
在进行配对样本t检验之前,需检验配对样本和配对差值是否满足正态性 。
操作步骤: 选择 【假设检验】-【分布检验】-【正态检验】,将 干预前的收缩压 、 干预后的收缩压 、 配对差值 作为检验变量,这里采用shapiro-wilk进行正态性检验。
正态检验结果
正态检验智能分析结果
Step3 :配对样本 t 检验
操作步骤: 选择【假设检验】-【位置检验】-【配对样本t检验】,将 干预前的收缩压 作为配对样本1, 干预后的收缩压 作为配对样本2,对比值填写0,显著水平α为5%,判断条件为=,点击开始分析,输出结果。
配对样本 t 检验结果
配对样本 t 检验智能分析结果
结果说明 :MedSPSS给出了配对样本t检验的智能分析结果,在95%置信水平下,因(p =≤),呈现显著性,因此拒绝原假设,接受备选假设H1(干预前的收缩压的平均值 - 干预后的收缩压的平均值 ≠ 0),即干预前的收缩压的平均值≠干预后的收缩压的平均值,说明干预前后收缩压存在差异性差异。
结合干预前后的收缩压均值分别为141和131,干预后低于干预前的,说明非药物干预有助于降压。
本期内容分享就到这里,MedSPSS将持续地为大家带来案例教学,大家在学习的过程中有任何想法,欢迎积极留言。
秋风送爽,也给我们送来了刘岭教授的统计说说第五期。这一期的统计学方法之选择大家一定要认真学起来,说不定马上你就会用到了。编者语针对常用的基本统计学方法,一般而言
t检验,也称student t检验(Student's t test),主要用于样本含量较小(例如n < 30),总体标准差σ未知的正态分布。t检验是用t分布理
t检验的适用条件: 1、已知一个总体均数; 2、可得到一个样本均数及该样本标准差; 3、样本来自正态或近似正态总体。 t检验主要用于样本含量较小(例如n < 3
卡方近似于万能吧,定量数据应用卡方会损失好多信息,本来挺准确的搞成大概了。应用范围越广的,意义也就越小
答 可以的,没问题。