我是睡觉大王
1、t值是t检验的统计量值,t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布。t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。2、F值是F检验的统计量值。F检验是一种在零假设(nullhypothesis,H0)之下,统计值服从F-分布的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计母体。3、P值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P值,一般以P<为有统计学差异,P<为有显著统计学差异,P<为有极其显著的统计学差异。其含义是样本间的差异由抽样误差所致的概率小于、、。扩展资料:F值和t值是F检验和t检验的统计量值,与它们相对应的概率分布,就是F分布和t分布。统计显著性是出现目前样本这结果的机率。P值代表结果的可信程度,P越大,就越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率,如p=提示样本中变量关联有5%的可能是由于偶然性造成的。参考资料:百度百科——假设检验中的P值百度百科——F检验百度百科——t检验
另一种追逐
F值是检验计量模型的总体显著水平。
原理:显著性检验的基本原理是提出“无效假设”和检验“无效假设”成立的几率(P)水平的选择。所谓“无效假设”,就是当比较实验处理组与对照组的结果时,假设两组结果间差异不显著,即实验处理对结果没有影响或无效。
经统计学分析后,如发现两组间差异是抽样引起的,则“无效假设”成立,可认为这种差异为不显著(即实验处理无效)。若两组间差异不是由抽样引起的,则“无效假设”不成立,可认为这种差异是显著的(即实验处理有效)。
显著性检验的基本思想可以用小概率原理来解释:
1、小概率原理:小概率事件在一次试验中是几乎不可能发生的,假若在一次试验中小概率事件事实上发生了。那只能认为该事件不是来自我们假设的总体,也就是认为我们对总体所做的假设不正确。
2、观察到的显著水平:由样本资料计算出来的检验统计量观察值所截取的尾部面积。这个概率越小,反对原假设,认为观察到的差异表明真实的差异存在的证据便越强,观察到的差异便越加理由充分地表明真实差异存在。
以上内容参考:百度百科-显著性检验
dodolong64
F值表示整个拟合方程的显著性,F越大,表示方程越显著,拟合程度也就越好。
P值表示不拒绝原假设的程度。简而言之,P<表示假设更可能是正确的,反之则可能是错误的。
r值是拟合优度指数,用来评价模型的拟合好坏等,取值范围是【-1,1】,越接近正负1越好。R平方=SSR/SST。其中SSR是回归平方和,SST是总离差平方和。
P值是衡量控制组与实验组差异大小的指标,意思是P值小于.05,表示两组存在显著差异,意思是P值小于.01,表示两组的差异极其显著,可以用SPSS统计,根据自变量应该是果蝇的性别,因变量应该是寿命,自变量是名义变量,因变量是连续变量,所以用单因素方差分析就可以得出结果了。
另外在统计解释时一般不看F值,只需要看P值就可以了,但是在写论文时还是要将F值写出来,并把P值放在后面用括号括起来。
扩展资料:
F检验对于数据的正态性非常敏感,因此在检验方差齐性的时候,Levene检验, Bartlett检验或者Brown–Forsythe检验的稳健性都要优于F检验。
F检验还可以用于三组或者多组之间的均值比较,但是如果被检验的数据无法满足均是正态分布的条件时,该数据的稳健型会大打折扣,特别是当显著性水平比较低时。但是,如果数据符合正态分布,而且alpha值至少为,该检验的稳健型还是相当可靠的。
参考资料来源:百度百科-F检验
采用spss软件,单因素分组对照计算。 t值和P值都用来判断统计上是否显著的指标。在p值就是拒绝原假设的最小alpha值,把统计量写出来,带进去算出来之后,根据
你把各组30例原始数据拿来可以直接统计分析,你所给的数据不能分析。
t/F值是指t值或F值,两种不同的统计学方法中的参数指标;t值常见于t检验中,当t
1、t值是t检验的统计量值,t检验,亦称studentt检验(Student'sttest),主要用于样本含量较小(例如n
结果p值都很小,显著性越高,样本量则越少。 同一批数据,只用里面的一部分数据时,样本量减小,p值就全不显著。 样本量其实就是样本的数量。