• 回答数

    3

  • 浏览数

    190

懒云堂主
首页 > 职称论文 > 七年级数学论文600字

3个回答 默认排序
  • 默认排序
  • 按时间排序

小可爱mmd22

已采纳

"数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科比起来,有哪些特点?它有什么相应的思想方法?它要求我们具备什么样的主观条件和学习方法?本讲将就数学学科的特点,数学思想以及数学学习方法作简要的阐述。 一、数学的特点(一) 数学的三大特点严谨性、抽象性、广泛的应用性所谓数学的严谨性,指数学具有很强的逻辑性和较高的精通性,一般以公理化体系来体现。 什么是公理化体系呢?指得是选用少数几个不加定义的概念和不加逻辑证明的命题为基础,推出一些定理,使之成为数学体系,在这方面,古希腊数学家欧几里得是个典范,他所著的《几何原本》就是在几个公理的基础上研究了平面几何中的大多数问题。在这里,哪怕是最基本的常用的原始概念都不能直观描述,而要用公理加以确认或证明。 中学数学和数学科学在严谨性上还是有所区别的,如,中学数学中的数集的不断扩充,针对数集的运算律的扩充并没有进行严谨的推证,而是用默认的方式得到,从这一点看来,中学数学在严谨性上还是要差很多,但是,要学好数学却不能放松严谨性的要求,要保证内容的科学性。 比如,等差数列的通项是通过前若干项的递推从而归纳出通项公式,但要予以确认,还需要用数学归纳法进行严格的证明。 数学的抽象性表现在对空间形式和数量关系这一特性的抽象。它在抽象过程中抛开较多的事物的具体的特性,因而具有十分抽象的形式。它表现为高度的概括性,并将具体过程符号化,当然,抽象必须要以具体为基础。 至于数学的广泛的应用性,更是尽人皆知的。只是在以往的教学、学习中,往往过于注重定理、概念的抽象意义,有时却抛却了它的广泛的应用性,如果把抽象的概念、定理比作骨骼,那么数学的广泛应用就好比血肉,缺少哪一个都将影响数学的完整性。高中数学新教材中大量增加数学知识的应用和研究性学习的篇幅,就是为了培养同学们应用数学解决实际问题的能力。 二、高中数学的特点往往有同学进入高中以后不能适应数学学习,进而影响到学习的积极性,甚至成绩一落千丈。为什么会这样呢?让我们先看看高中数学和初中数学有些什么样的转变吧。 1、理论加强2、课程增多3、难度增大4、要求提高三、掌握数学思想高中数学从学习方法和思想方法上更接近于高等数学。学好它,需要我们从方法论的高度来掌握它。我们在研究数学问题时要经常运用唯物辩证的思想去解决数学问题。数学思想,实质上就是唯物辩证法在数学中的运用的反映。中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,初步公理化思想,数形结合思想,运动思想,转化思想,变换思想。 例如,数列、一次函数、解析几何中的直线几个概念都可以用函数(特殊的对应)的概念来统一。又比如,数、方程、不等式、数列几个概念也都可以统一到函数概念。 再看看下面这个运用"矛盾"的观点来解题的例子。 已知动点Q在圆x2+y2=1上移动,定点P(2,0),求线段PQ中点的轨迹。 分析此题,图中P、Q、M三点是互相制约的,而Q点的运动将带动M点的运动;主要矛盾是点Q的运动,而点Q的运动轨迹遵循方程x02+y02=1①;次要矛盾关系:M是线段PQ的中点,可以用中点公式将M的坐标(x,y)用点Q的坐标表示出来。 x=(x0+2)/2 ②y=y0/2 ③显然,用代入的方法,消去题中的x0、y0就可以求得所求轨迹。 数学思想方法与解题技巧是不同的,在证明或求解中,运用归纳、演绎、换元等方法解题问题可以说是解题的技术性问题,而数学思想是解题时带有指导性的普遍思想方法。在解一道题时,从整体考虑,应如何着手,有什么途径?就是在数学思想方法的指导下的普遍性问题。 有了数学思想以后,还要掌握具体的方法,比如:换元、待定系数、数学归纳法、分析法、综合法、反证法等等。只有在解题思想的指导下,灵活地运用具体的解题方法才能真正地学好数学,仅仅掌握具体的操作方法,而没有从解题思想的角度考虑问题,往往难于使数学学习进入更高的层次,会为今后进入大学深造带来很有麻烦。 在具体的方法中,常用的有:观察与实验,联想与类比,比较与分类,分析与综合,归纳与演绎,一般与特殊,有限与无限,抽象与概括等。 要打赢一场战役,不可能只是勇猛冲杀、一不怕死二不怕苦就可以打赢的,必须制订好事关全局的战术和策略问题。解数学题时,也要注意解题思维策略问题,经常要思考:选择什么角度来进入,应遵循什么原则性的东西。一般地,在解题中所采取的总体思路,是带有原则性的思想方法,是一种宏观的指导,一般性的解决方案。 中学数学中经常用到的数学思维策略有: 以简驭繁、数形结全、进退互用、化生为熟、正难则反、倒顺相还、动静转换、分合相辅如果有了正确的数学思想方法,采取了恰当的数学思维策略,又有了丰富的经验和扎实的基本功,一定可以学好高中数学。 四、学习方法的改进身处应试教育的怪圈,每个教师和学生都不由自主地陷入"题海"之中,教师拍心某种题型没讲,高考时做不出,学生怕少做一道题,万一考了损失太惨重,在这样一种氛围中,往往忽视了学习方法的培养,每个学生都有自己的方法,但什么样的学习方法才是正确的方法呢?是不是一定要"博览群题"才能提高水平呢? 现实告诉我们,大胆改进学习方法,这是一个非常重大的问题。 (一) 学会听、读我们每天在学校里都在听老师讲课,阅读课本或者资料,但我们听和读对不对呢? 让我们从听(听讲、课堂学习)和读(阅读课本和相关资料)两方面来谈谈吧。 学生学习的知识,往往是间接的知识,是抽象化、形式化的知识,这些知识是在前人探索和实践的基础上提炼出来的,一般不包含探索和思维的过程。因此必须听好老师讲课,集中注意力,积极思考问题。弄清讲得内容是什么?怎么分析?理由是什么?采用什么方法?还有什么疑问?只有这样,才可能对教学内容有所理解。 听讲的过程不是一个被动参预的过程,在听讲的前提下,还要展开来分析:这里用了什么思想方法,这样做的目的是什么?为什么老师就能想到最简捷的方法?这个题有没有更直接的方法? "学而不思则罔,思而不学则殆",在听讲的过程中一定要有积极的思考和参预,这样才能达到最高的学习效率。 阅读数学教材也是掌握数学知识的非常重要的方法。只有真正阅读和数学教材,才能较好地掌握数学语言,提高自学能力。一定要改变只做题不看书,把课本当成查公式的辞典的不良倾向。阅读课本,也要争取老师的指导。阅读当天的内容或一个单元一章的内容,都要通盘考虑,要有目标。 比如,学习反正弦函数,从知识上来讲,通过阅读,应弄请以下几个问题: (1) 是不是每个函数都有反函数,如果不是,在什么情况下函数有反函数? (2)正弦函数在什么情况下有反函数?若有,其反函数如何表示? (3)正弦函数的图象与反正弦函数的图象是什么关系? (4)反正弦函数有什么性质? (5)如何求反正弦函数的值? (二) 学会思考爱因斯坦曾说:"发展独立思考和独立判断的一般能力应当始终放在首位",勤于思考,善于思考,是对我们学习数学提出的最基本的要求。一般来说,要尽力做到以下两点。 1、善于发现问题和提出问题2、善于反思与反求

149 评论

两小酒窝

初中数学小论文今天,在我们数学俱乐部里,老师给我们研究了一道有趣的题目,其实也是一道有些复杂的找规律题目,题目是这样的“有一列数:1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,……。这列数字中前240个数字的和是多少?”我一拿到题目,心里猛然想到,这题目必须得按照规律来做。想法一:开始我便先试着先3个一组来求和,6,5,10,9,12,15,14……。这样一看,这些数字各有特征,关键就是找不出合适的规律。于是,我又找4个一组来求和,8,10,12,16,20……。仔细一看,好像也没什么规律,我只好再试着找5个一组来求和,9,14,19,24……,这样一来就非常明显的看出它们是等数列,我非常高兴,再把240÷5=48(组),5个一组,(1、2、3、2、1),(2、3、4、3、2),(3、4、5、4、3),(4、5、6、5、4)……那么就可以求出末项的和,9+47×5=244,把首项加末项的和乘项数除以2,(9+244)×48÷2=6072。这样就完成了!想法二:我又发现每组开头第一个数字恰好分别是1,2,3,4……48,那么另一种方法就产生了,(1+48)×48÷2×2+(2+49)×48÷2×2+(3+50)×48÷2×2=6072。这样想也合乎情理,也是一个理得清楚而且又实用的方法!想法三:我又发现有N组时,他的和也是把(1+2+3+4+……+N)×5+4N=你要求那N组数的和,比如(1+2+3+4+……+48)×5+4×48=6072。这个规律也是要通过不断来细心观察与研究得来的,这个规律虽然有些抽象,但如果是自己弄明白了,那还要比其他两种方法更容易些。我做的只是其中的三种解法,其实方法还有很多,但是要靠自己来找其中的规律,解其中的奥秘!

310 评论

吃买吃买吃买

巧算“24”点一, 摘要 在我们的生活中,“24点”这个游戏已经被人们所熟知。在1~10这些数字中,任意挑取四个数字,运用+、-、×、÷和()这些运算符号,使之和差积商等于24。那么,如何更简便地计算“24点”呢?如:以下这组数字:4,3,3,6算法:(3÷3×4)×6=24再例如:5,1,8,3算法:5×3+1+8=24二, 问题的提出&探究目的 假设四个自然数a、b、c、d,有a≤10,b≤10,c≤10,d≤10。那么,如何快速的将这四位数字运用+、-、×、÷和()这些运算符号,使之和差积商等于24?等于n时呢?三, 探究过程 先看几组实例:数字方法9,5,3,4(5×3-9)×43,3,6,8(3×3-6)×86,8,5,4(5+4-6)×83,7,5,6[(7+5)÷3]×65,4,8,5(4-5÷5)×83,5,8,4(5-3)×(8+4)1,9,8,5(8-5)×(9-1)1,8,6,18÷(1+1)×66,6,5,3(5-3)×(6+6)1,3,4,4(3-1+4)×4由以上表格得出第一种算法:利用公因式的算法∵24=72÷3=48÷2=1×24=2×12=3×8=4×6∴1,其中若a为24的约数,那么应优先考虑使b,c,d的和差积商为24÷a。其一般形式为(b?c?d)×a=24(?为+、-、×、÷中的一个)对于a,b,c,d,其组合有16896种可能,据不完全统计,这是可能性最大的一种。 2,a,b,c,d中,其中若a为24的约数,但(b?c?d)×a≠24,则应优先考虑(a?b)?(c?d)或(a?b)?(c?d)=24。据不完全统计,a×b-c×d和(a±b)?(c±d)的几率较大(?为+、-、×、÷中的一个)同理,推广到任意四个小于10的自然数a,b,c,d,使他们的和差积商等于n,则若n为合数,则(b?c?d)×a=n和(a?b)?(c?d)或(a?b)?(c?d)=n,这两种组合的可能性最大。且据不完全统计,若n的约数越多,这两种的可能性最大。(?为+、-、×、÷中的一个)3,最可能出现的几种情况:(不完全统计)(1)(a—b)×(c+d)(2)(b+c)÷d×a (3)(b-c÷d)×a (4)(b+c-d)×a 请看第二组实例:数字方法1,3,5,6(5+1)×3+69,9,6,5(9-6)×5+97,6,5,16×5+1-77,4,7,37×4+3-79,6,4,59+6+4+59,3,1,4(4+1)×3+93,8,4,43×8-4+4不难看出,第一种算法并不适合所有的牌组。那么,无法使用第一种牌组时,我们应该怎样去做呢?于是,我便做出了如下几种的归纳:1, 若a?b=24,c=d,则有a?b+c-d=24(?为+、-、×、÷ 中的一个,且前后的?为同一运算符号)2, 若a?b=25,c=d,则有(a?b)×c÷d=24(?为+、-、×、÷ 中的一个,且前后的?为同一运算符号)3, 同理,推广到任意四个小于10的自然数a,b,c,d,使他们的和差积商等于n 。n的约数越少,则出现(a?b?c)±d和(a?b)±(c,d)的几率越高。(?为+、-、×、÷中的一个)4, 据不完全统计,以下两种算法的机率较大。(1)a×b+c-d (2)(a-b)×c+d 经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,列出几种情况:1,1,1,k,其中k≠82,2,2,k,其中k=1,2,65,5,5,k,其中k≠1,4,5,6,96,6,6,77,7,7,k,其中k≠3,48,8,8,k,其中k=7,8,99,9,9,k,其中k≠3k,k,k,k,其中k≠3,4,5,6以下均为不规则:6,4,3,7 4,6,4,7 3,4,8,8 9,4,4,5 7,7,9,4 9,9,1,4 等

196 评论

相关问答

  • 七年级数学论文600字

    "数学是一切科学之母"、"数学是思维的体操",它是一门研究数与形的科学,它不处不在。要掌握技术,先要学好数学,想攀登科学的高峰,更要学好数学。 数学,与其他学科

    懒云堂主 3人参与回答 2023-12-11
  • 七年级上数学学生论文600字

    曾听一位奥数老师说过这么一句话:学数学,就犹如鱼与网;会解一道题,就犹如捕捉到了一条鱼,掌握了一种解题方法,就犹如拥有了一张网;所以,“学数学”与“学好数学”的

    原来我在这里8 3人参与回答 2023-12-07
  • 数学小论文六年级下册600字

    5555555

    美妮宝贝 4人参与回答 2023-12-08
  • 生物论文600字七年级上

    世间有许许多多的生物体,世界因生命而精彩。生物形态各异,很有趣,比如,翩翩起舞的蝴蝶,讨厌的苍蝇,可爱而会唱歌的小鸟,还有6500万年前灭绝的恐龙,它们的种种生

    高小贱大琪琪 4人参与回答 2023-12-06
  • 五年级数学小论文600字

    我想要一个有关小学五年级数学方面 的论文,请支持

    想鱼的熊 6人参与回答 2023-12-11