• 回答数

    4

  • 浏览数

    306

大米粒圆又圆
首页 > 职称论文 > 油菜论文参考文献

4个回答 默认排序
  • 默认排序
  • 按时间排序

quanyanhei

已采纳

自1983年首次获得转基因烟草和马铃薯以来,近十年来植物基因工程的研究和发展非常迅速。种植了100多种植物,包括水稻、玉米、土豆、棉花、大豆、油菜、亚麻、向日葵和经济作物西红柿、黄瓜、芥菜、甘蓝、花椰菜、胡萝卜、茄子、生菜、芹菜和其他蔬菜作物; 苜蓿、白三叶草; 苹果、核桃、李子、木瓜、瓜类、草莓和其他水果; 矮牵牛、菊花、康乃馨、加兰花和其他花卉和杨树品种。应该说,转基因植物取得了令人鼓舞的突破。在中国,粮食和豆科作物在农业生产中占有重要地位。现以水稻和大豆为例,介绍植物基因工程的新进展。

204 评论

Leo叶2222

你好,希望我们可以帮你。相关资料在知网,万维网能查到资料。论文不会写,最关键的是要把心态放正,一步步来,多看点范文,看看别人怎么写的,食品安全与检测方面论文是我们特长,我们的服务特色:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。

316 评论

往事随风@遗忘

收稿日期:2007-10-25基金项目:深圳市科技和信息局基金资助项目作者简介:王丹(1982-),女,辽宁本溪人,硕士研究生,从事植物生物技术研究。注:雷江丽为通讯作者。大花美人蕉茎尖组织培养技术研究王 丹1,2,雷江丽2,吴燕民3,吕 慧2,郁继华1(1.甘肃农业大学 农学院,甘肃 兰州 730070;2.深圳市园林科学研究所,广东 深圳 518003;3.中国农业科学院 生物技术研究所,北京 100081)摘 要:以大花美人蕉(Canna×generalis)根茎茎尖为外植体进行组织培养技术研究,筛选出芽诱导适宜的培养基为MS + 6-BA (单位下同)+ TDZ ;MS + 6-BA + TDZ + NAA 培养基能较好地诱导分化出丛生芽, 继代增殖培养中与MS + 6-BA + TDZ + NAA 培养基交替使用可减少畸形芽,增殖系数达;适宜的生根培养基为MS + 6-BA + NAA ,生根率达,且植株生长健壮,移栽易成活。关键词:大花美人蕉;茎尖;组织培养中图分类号: 文献标识码:A 文章编号:1009-7791(2008)01-0033-04Research on Shoot-tip Culture of Canna×generalisWANG Dan1,2, LEI Jiang-li2, WU Yan-min3, LÜ Hui2, YU Ji-hua1( of Agronomy, Gansu Agricultural University, Lanzhou 730070, Gansu China; Institute of LandscapeGardening, Shenzhen 518003, Guangdong China; Research Institute, Chinese Academy of AgriculturalSciences, Beijing 100081, China)Abstract: The paper mainly studied on tissue culture of Canna×generalis with the stem tips asexplants. The results showed that the bud inoculation medium was MS + 6-BA ; the best of clump shoot induction and differentiation medium was MS + 6-BA +TDZ + NAA ; using MS + 6-BA + TDZ + NAA asproliferation medium, an optimal proliferation rate was obtained. When the two kinds of mediumused alternatively, the effect was better. The optimum rooting medium was MS + 6-BA +NAA , the rate of rooting could reach , and cultured in this medium, the plant grewwell and easy to words: Canna×generalis; shoot-tip; tissue culture大花美人蕉(Canna×generalis)属美人蕉科(Cannaceae)美人蕉属(Canna)的园艺杂交种[1],是多年生喜光宿根草本花卉,原产美洲热带和非洲等地。其枝叶茂盛、花朵艳丽、姿态优美、花期长,在深圳地区几乎全年开花,是配置大型花坛的优良品种。大花美人蕉不仅观赏价值高,而且能吸收硫、氯、氟、汞等有害物质,具有净化空气、保护环境的作用,因此,世界许多城市的园林绿化中都广泛应用。美人蕉传统的繁殖方式主要采用分切地下根茎的方法,繁殖速度慢、增殖效率低,而且连续营养繁殖造成病毒积累致使病毒病在各地相当普遍,严重影响其观赏价值。利用茎尖组织培养进行脱毒试管苗快繁,是目前大力繁殖与推广美人蕉的主要手段。关于美人蕉组织培养的研究报道较少[2,3],本研究探索其组织培养高效的再生体系,以期为品种提纯复壮及遗传转化、性状改良奠定基础。2008,37(1): Plant Science第·34· 37 卷1 材料与方法 材料供试材料为目前城市绿化中普遍应用的大花美人蕉‘President’品种。 外植体选择与处理选择生长健壮、无病虫害的优良母株,挖取带芽胞的根茎,去除表面老皮并用肥皂水清洗。用75%乙醇棉擦拭,然后采用不同的消毒剂及处理时间(升汞10min、2%次氯酸钠10min、2%次氯酸钠20min、2%次氯酸钠 + 升汞5min、2%次氯酸钠 + 升汞10min),封闭式振摇灭菌。无菌水冲洗5 次,置于超净工作台上备用。接种前,剥去外部叶片,露出生长点,立即切取茎尖进行接种。 培养方法及培养条件试验于2006 年10 月在深圳市园林科学研究所组培室进行。诱导、增殖和生根培养基均选用MS为基本培养基,在不同培养阶段附加不同种类、不同浓度配比的植物生长调节剂(表2~表4),蔗糖3%,pH 。培养温度(28±2)℃,光照强度2 500 lx,光照周期为14h/d,相对湿度70%~80%。每处理接种30 瓶。定期观察试管苗生长与分化情况。2 结果与分析 不同消毒处理方式对外植体无菌化的影响因供试外植体取自美人蕉地下根茎,表面污染物较多,不易消毒,且不同植物及外植体的成熟度对消毒剂的反应不同,故本试验选用升汞和次氯酸钠进行灭菌效果比较,以筛选合适的消毒剂及消毒处理时间。由表1 可知,2%次氯酸钠20min 处理的无菌化效果较好,但茎尖褐化较严重,说明灭菌时间过长对去老皮后的幼嫩根茎影响较大。升汞10min 处理与2%次氯酸钠 + 升汞 10min处理,无菌化效果差异不大,但2%次氯酸钠 + 升汞 10min 处理有轻微药害。因此,后续实验选用升汞处理10min 进行外植体消毒。 不同生长调节剂配比对芽诱导的影响以MS 为基本培养基,附加不同浓度6-BA、NAA、2,4-D、KT、TDZ 等(表2),以筛选出较适宜美人蕉茎尖诱导分化的配方。因美人蕉根茎具有休眠特性,芽诱导分化较难。TDZ 具有很强的促进细胞分裂活性,~μmol/L 即可有效促进分化[4],因此,本实验对TDZ 的诱导效果进行初步探索。试验表明,在不添加任何生长调节剂的MS 基本培养基(1 号)上,茎尖接种10d 后开始生长,叶片展开后,生长停止;15d 后转接到新的MS 培养基上无明显生长,随后叶片逐渐变黄、萎蔫,说明基本培养基中添加生长调节剂是美人蕉离体培养的必要条件。在仅添加6-BA 的2、3、4 号培养基中,高浓度的2 号培养基分化率为,明显好于3、4号培养基,说明美人蕉启动芽诱导分化需要高浓度的细胞分裂素(表2)。11~16 号培养基添加物为不同生长调节剂与TDZ 组合(表2)。仅添加TDZ 的培养基分化率为0,而多种生长调节剂配合使用分化效果更好[5]。其中15 号培养基的侧芽分化率最高,达,且每个茎尖可增殖2~3 个侧芽,但个别茎尖经多次转接后有畸形芽;与2 号培养基相比,分化率明显提高,说明添加低浓度TDZ 可促进芽诱导分化(表2)(图版-a)。5、6、7 号培养基为生根培养基,探讨NAA 对美人蕉茎尖生长和生根的影响。试验结果初步说明美人蕉在6-BA/NAA 小于2/ 时生根率可达50%以上(表2)。8、9、10 号培养基,探讨美人蕉脱分化,诱导愈伤组织,但结果均不理想。因此,建立高效的美表1 不同消毒剂及处理时间对外植体无菌化的影响处 理 接种数污染数污染率(%) 药害情况升汞10min 30 5 基本无药害2%次氯酸钠10min 30 12 无药害2%次氯酸钠20min 30 4 20%有轻微药害2%次氯酸钠+升汞5min 30 10 3%有轻微药害2%次氯酸钠+升汞10min 30 5 7%有药害第1 期 王丹,等:大花美人蕉茎尖组织培养技术研究 ·35·人蕉遗传转化再生体系还需进一步探索愈伤组织诱导途径。 芽继代增殖为了探讨优化的芽继代增殖培养基配方,按表3 设计6-BA、NAA、TDZ 的正交实验,以15 号培养基上分化出的丛生芽为接种材料,进行继代增殖培养(图版-b)。由表3 可见,除17、18 号培养基外,低浓度TDZ()的分化促进作用较高浓度()的效果好,说明高活性的TDZ 浓度过高反而抑制分化。当 时, NAA 促分化作用显著优于。在TDZ、NAA 浓度相同的情况下,随着6-BA 浓度的升高,分化率提高。但随着继代次数的增多,含高浓度6-BA的27 号培养基分化率略有下降,甚至有个别畸形芽产生,说明高浓度细胞分裂素对短期的分化有促进作用[9],但继代数次后,芽已经萌动,自身具有分化能力,需适当降低6-BA 浓度进行壮苗,以避免畸形芽产生。因此,在增殖过程中交替使用分化增殖系数较高的19 号培养基和27 号培养基,既可保证较高的芽分化率,又可使继代苗生长健壮,减少畸形芽。 生根诱导增殖芽3~5cm 长时,转接到生根培养基上培养约10d 后,可见到根生成(图版-c)。接种20d 后统计生根结果(表4)。从表4可见,所用培养基上都有根生成,说明美人蕉生根较容易;结合生根率和生长势,我们认为MS + 6-BA + NAA 培养基较适宜美人蕉生根。表2 不同植物生长调节剂组合的比较植物生长调节剂(mg/L) 编号6-BA NAA 2,4-D KT TDZ分化率(%) 生根率(%) 备注1 0 0 0 0 02 9 0 0 0 0 参考[2]3 5 0 0 0 0 参考[3]4 3 0 0 0 0 2 1 0 0 0 2 0 0 0 2 0 0 0 08 0 0 4 0 09 0 0 2 1 0 参考[6]10 0 0 2 0 参考[7]11 0 0 0 0 012 0 0 0 参考[8]13 0 0 0 0 0 1 0 8 0 0 0 5 0 0 表3 不同生长调节剂配比对芽继代繁殖的影响生长调节剂(mg/L) 编号6-BA NAA TDZ接种数分化率(%)增值系数 生长势17 30 ++18 30 ++19 30 ++20 30 ++21 30 ++22 30 ++23 30 ++24 30 +25 30 ++26 30 +27 30 ++28 30 +注:++ 表示生长势强;+表示生长势弱。同列中不同字母表示差异显著(P<=,表4 同。表4 不同的生长调节剂配比对组培苗生根的影响生长调节剂(mg/L) 编号6-BA NAA接种数生根苗数生根率(%)植株生长势29 0 30 19 +30 0 30 21 ++31 30 20 +++32 30 16 ++注:+++ 表示生长势强;++表示生长势中等;+表示生长势弱。第·36· 37 卷3 结 论美人蕉根茎生长在土壤中,无菌化操作较困难。灭菌试验表明,升汞震荡灭菌10min 效果较好,采回的外植体应尽快处理接种,放置时间过长伤口处易染菌,导致接种后褐化较严重。MS + 6-BA + ZDT + NAA 培养基能较好地诱导分化丛生芽,MS + 6-BA + TDZ NAA 为较好的增殖培养基,在增殖培养过程中这两种配方交替使用效果更好;短时间使用高浓度生长调节剂对增殖有促进作用,但长时间使用高浓度生长调节剂会使组培苗质量下降。在试验中还发现,转接次数多的茎尖较转接次数少的分化率大,建议在接种后的10~20d 内及时转接。选用MS + 6-BA + NAA 为生根培养基,生根率较高,根系粗壮、根毛密集,植株生长健壮(图版-d),且移栽成活率较高。参考文献:[1] Segeren W, et al. The genus Canna in Northern South America[J]. Acta Bot Neerl., 1971,20(6): 663-680.[2] 刘文萍,等. 美人蕉茎尖组织培养及快繁技术[J]. 北方园艺, 2001(6): 32.[3] 丁爱萍,等. 美人蕉组织培养及快速繁殖技术[J]. 园林科技, 2006(1): 11-12.[4] Singh N D, et al. The effect of TDZ on organogenesis and somatic embryogenesis in pigeonpea (Cajanus cajan L. Millsp)[J].Plant Science, 2003,164(3): 341-347.[5] 王关林,等. 高活性细胞激动素TDZ 在植物组织培养中的应用[J]. 植物学通报, 1997,14(3): 47-53.[6] 宣朴,等. 生姜茎尖组培快繁技术研究[J]. 西南农业学报, 2004,17(4): 484-486.[7] Kromer K, et al. In vitro cultures of meristem tips of Canna indica L.[J]. Acta Horticulturace, 1985,167: 279-286.[8] Vendrame W A, et al. In vitro propagation and plantlet regeneration from Doritaenopsis Purple Gem 'Ching Hua' flowerexplants[J]. HortScience, 2007,42(5): 1 256-1 258.[9] 刘敏. 花卉组织培养与工厂化生产[M]. 北京: 地质出版社, 2002: 101-102.

94 评论

密果儿颖颖

大家好,本周给大家分享的是最近发表在 NG 上与 油菜育种中农艺性状的基因组选择和遗传结构 相关的一篇文章。

文章题目:Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding (现代油菜育种中农艺性状的基因组选择和遗传结构)

期刊: Nature genetics

影响因子: 2020_IF = ; 中科大类: 综合性期刊1区; 中科小类: 综合性期刊1区; JCR分区: Q1

发文单位: 中国农业科学院油料作物研究所、禾致源研发与合作中心、美国密苏里大学和 西澳大学等4家单位。

摘要: 油菜是世界上重要的产油作物。近几十年来,它的适应性、产量和品质都有了显著的提高,但育种选择背后的遗传机制仍不清楚。因此,作者在418份不同油菜种质的全基因组测序基础上,对育种过程中的油菜进行了全面的基因组评估。作者揭示了选择适应性和农艺性状的基因组基础。全基因组关联研究在56个重要农艺性状(包括植株结构和产量性状)鉴定了628个关联位点相关的致病候选基因。此外,作者发现农艺性状的可能候选基因中存在非同义突变,在整个改良过程中等位基因频率分布存在显著差异,包括控制种子重量的核糖体循环因子( BnRRF )基因。本研究为油菜品种改良提供了基因组基础,为基因组辅助育种提供了宝贵的基因组资源。

主要结果:

1、基因组变异和群体结构

作者对418份不同的甘蓝型油菜种质进行重测序,获得了测序数据。该数据集包括410份油菜籽种质、7份蔬菜种质和一份合成油菜种质的生态型、地理以及性状和繁殖时间的多样性(图1a)。使用人工合成油菜(2AF508)作为外类群,418份材料之间的系统发育关系表明,蔬菜用途油菜与产油材料之间存在明显差异(图1b-e)。

图1. 418份油菜种质的地理分布和群体多样性。a、418份材料的地理分布,冬季、春季、半冬季和蔬菜用途材料分别用蓝色、绿色、红色和黄色表示。b、以人工合成油菜为外群,利用全基因组SNPs构建所有材料的系统发育树。c、蔬菜用途材料和三种生态型油菜之间的核苷酸多样性(π)和群体分化指数(Fst)。d、每个亚群的LD衰减值。e、该研究中所有材料的PCA分析。

2、适应性和农艺性状的全基因组选择 作者在不同生态型和育种时期使用了XP-CLR、π、Fst和OmegaPlus方法来确定与适应性、产量和品质改良有关的潜在选择性信号(图2)。在中国,油菜育种可能经历了两个重要阶段:提高对当地环境的适应能力和选择高产优质的种子。在改良过程中,在不同育种时期的五次比较中,至少有两次确定了总共1005个包含2604个基因的选定区域(图2)。第一阶段主要是环境适应;作者鉴定了为提高适应性而选择的相关基因,这些基因与半温型油菜的典型表型变化一致,从半冬油菜中筛选出8个与叶片衰老或叶绿素生物合成相关的基因,包括ERF4和CYP38,FT、PHYC和FAR1等昼夜节律基因参与开花时间的调节(图2a)。此外,叶角和开花时间的选择区间与相应的GWAS信号有重叠(图2c)。

3、56个农艺性状的GWAS分析 从2013年到2017年,共对6个地区的403个不同油菜品种的56个重要农艺性状进行了测定,并将其分为6类:PA、形态特征、胁迫和抗病性、生育期、产量组成、含油量和脂肪酸组成,具有丰富的表型多样性(图3)。作者在六个与高于阈值的表型变异相关的区域中确定了628个SNP-GWASs关联峰(图3)。此外,作者对56个性状进行了InDel-GWASs,InDel-GWASs识别的大多数位点与SNP-GWAS结果重叠,而一些位点仅在InDel-GWAS中检测到。

图3. 油菜基因组特征与GWAS结果的整合。a、每个染色体上的基因密度。b、SNP密度。c、插入/缺失密度。d-g、产量(d)、种子质量(e)、生长期(f)、植株结构(g)。h、A和C亚基因组的共线性分析。

4、植物结构(PA)候选基因的鉴定 PA强烈影响光截获和光合作用,在产量和作物适应中起着极其重要的作用。LA是叶片偏离水平方向与地面的角度,在越冬阶段,半冬型油菜的LA比冬型油菜的LA更直立(图4a,b)。染色体A03上的一个重要GWAS信号包括一个候选基因BnaA03g10430D,该基因编码一个与LA相关的生长素外排载体(BnPIN2),并且可能在育种过程中经历了选择(图4c-h)。因此,BnaA03g10430D可能参与生长素的极性运输,促进油菜不定根的产生,调节LA。

5、产量相关性状候选基因的鉴定

产量是油菜最重要、最复杂的性状之一,提高产量是油菜育种的目标。在三种环境中,12个基因座与InDel-GWAS鉴定的基因座重叠(图5a)。染色体C08上的一些候选基因如 BnaC08g31420D 、 BnaC08g32200D 和 BnaC08g32730D 同时影响SW和SL(图5)。对于编码核糖体循环因子( BnRRF )的候选基因 BnaC08g32730D ,通过RNA-seq进行的表达分析表明,其在花蕾中高度表达(图5c)。作者初步分析表示,与空载体对照相比,在油菜T2系中过表达 BnRRF 也显示出显著增加的种子重量(图5d,f)。随后 BnRRF 基因表达测试显示,其与种子重量显著正相关(图5d,e)。单倍型分析检测到单倍型之间存在显著差异,并且两个SW候选基因( BnaC08g31420D 和 BnaC08g32730D )的单倍型频率在育种时期逐渐发生变化(图5g-i)。

6、种子质量和其他性状的候选基因

芸苔属作物中,GSL在种子中高浓度积累,降低了种子的营养价值。该研究中,作者使用SNP-GWAS和InDel-GWAS在染色体A02、A09和C09上识别出三个显著相关的信号(图6),此前报道的与GSL含量相关的基因,包括 GTR2 ( BnaA02g33530D 和 BnaA09g06190D )和 HAG1/MYB28 ( BnaC09g05300D )也在该研究中被鉴定(图6a,b)。此外,作者确定了3个新的候选基因( BnaA09g05280D 、 BnaC09g05240D 和 BnaC09g04850D )调节GSL含量(图6c-f)。有趣的是, BnaA09g05280D ( BnLSG )(低籽硫甙(LSG))和 BnaC09g04850D (其功能尚未报道)分别是染色体A09和C09上的同源基因对(图6c-h)。单倍型分析表明,这两个基因的三个或五个主要单倍型与GSL含量相关,并且在生态型和育种时期,有利单倍型(Hap A,赋予低GSL含量)的频率同时增加,表明 BnLSG 可能是油菜GSL含量的基因(图6c–h)。

总之这项研究研究揭示了油菜育种过程中不同品种和人工选择或适应的基因组变异现象。这些结果为理解农艺性状的遗传基础和促进未来作物改良育种提供了宝贵的资源。

文中所有图片均来自 Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding

文中有表述不当的地方,是我的问题,请在后台与我联系修改,也可以自行阅读原文,谢谢理解与支持。如有团体或个人认为本文侵犯您的权利,请及时联系我删除。

文章链接地址:

参考文献:

Hu, J., Chen, B., Zhao, J. et al. Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet (2022).

184 评论

相关问答

  • 论文油画参考文献

    这个可能要找到文艺复兴的了吧,搞艺术的还真不容易。

    *指尖的淚 4人参与回答 2023-12-07
  • 汽油机论文参考文献

    发动机 发动机,又称为引擎,是一种能够把一种形式的能转化为另一种更有用的能的机器,通常是把化学能转化为机械能。(把电能转化为机器能的称谓电动机)有时它既适用于动

    dongdongth 2人参与回答 2023-12-11
  • 油菜花论文的参考文献怎么写

    曾经有评选将婺源选为“中国最美古城镇”。这个位于江西东北部的小城,并不是一个严格意义上的江西城市,在其1200多年的建成史上,绝大部分时间是归属安徽省黄山市(原

    许小丹丹丹 4人参与回答 2023-12-09
  • 油菜论文参考文献

    自1983年首次获得转基因烟草和马铃薯以来,近十年来植物基因工程的研究和发展非常迅速。种植了100多种植物,包括水稻、玉米、土豆、棉花、大豆、油菜、亚麻、向日葵

    大米粒圆又圆 4人参与回答 2023-12-09
  • 关于徽菜论文的参考文献

    饮食健康论文

    Lisa艳艳 5人参与回答 2023-12-06