• 回答数

    3

  • 浏览数

    338

大眼睛鱼儿
首页 > 职称论文 > 关于测序论文范文资料

3个回答 默认排序
  • 默认排序
  • 按时间排序

pollyshen206

已采纳

生物科学论文格式范文

无论是身处学校还是步入社会,大家都尝试过写论文吧,论文是对某些学术问题进行研究的手段。那么,怎么去写论文呢?以下是我为大家整理的生物科学论文格式范文,供大家参考借鉴,希望可以帮助到有需要的朋友。

摘要:

随着我国对科学技术的探究和发展,生物科学与技术研究成为21世纪以来人类关注的重点话题,其发展与人们的生活息息相关,改变着人们的生产活动和生活面貌。随着生物科学技术的不断成熟,生物科学逐渐运用于现代医疗领域、农学领域和工业领域,它对基因遗传和生物化学的研究也具有重大意义。因此,重视生物科学的发展与应用,是关乎生活的重要话题。本文从生物科学的应用、研究成果进展和生物科学技术对社会的影响三方面对生物科学的发展与应用进行阐述。

关键词:

生物科学;科学技术;发展;应用;研究进展

生物科学是对生命活动规律和生命本质进行研究的一门学科,是认识自然的有利工具。20世纪50年代以来,DNA双螺旋结构的构建和基因重组等技术的重大突破发展,使得现代的生物技术逐渐趋于成熟。生物科学的发展对医学领域和农业领域的发展有重大的推动作用。重视生物科学的发展对人类的生产生活带来了巨大的影响。

一、生物科学的研究成果及发展

(一)基因组计划的实施

破译基因的遗传码,解开生命的奥秘是基因破译的主要目的。目前,科学研究人员对遗传图、物理图和转录图的制作工作已由相关的制作单位完成,这在理论上具有重大的进步意义的同时也具有重要的实践意义和很高的商业价值。2013年的1月中国科学家成功破译了小菜蛾基因组,历时三年的研究,终于得出了小菜蛾的基因组图谱,科学家指出,将进一步与国内外人员合作交流,在小菜蛾基因组的研发完成后,将继续开展研究与抗药性和食性生长发育密切相关的功能基因组学和遗传学,为小菜蛾的有效防御、持续控制提供科学依据。

(二)细胞全能技术的实施与应用

随着人类基因组图谱的进一步发展,更多的生物模式经重要的动植物基因组将不断被揭露。细胞全能技术是一项快速纯合创造新品种的先进技术。21世纪后,生物的起源、原始细胞的产生和新生物的形式与改造等重大理论问题在我国已经得到重大的发展。人类对生物生命本质的'认识将会进一步的提高,这对生物细胞全能技术的理论性和实践性的发展都将会产生重大的影响,对新品种作物的选育具有指导性因素。

(三)生物识别技术

生物识别技术是指依据人类自身所固有的生理或行为特征而进行识别的一种技术。目前,应用最为广泛的包括有:指纹识别、手掌几何学识别、声音识别、面部识别等。生物识别具有不易遗忘、防伪性能高、不易被盗、便于携带等特点,容易和电脑配套使用,从而增强在使用过程中的自动化管理,已广泛用于胜负、军队、银行等地。但生物识别技术中由于其中一部分技术含量较高,现在还处于试验阶段。

二、生物科学的应用

(一)农业领域的生物科学技术

20世纪以来,在生物科学领域,分子生物学的诞生及现代生物技术的兴起已然成为人类社会进步最伟大的事件之一。20世纪末21世纪初,对基因组学的突破性研究推动了生物技术进入迅猛发展的阶段。动植物和微生物技术在农业领域的发展已对农业起到了极大的推动作用。不仅如此,转基因技术的推广应用使得农业得到了相应的发展。同时,抗病虫、除草剂的使用推进了转基因棉花、玉米、花生、大豆等的商业化发展。现代分子生物学与传统的动植物育种学催生了新型的分子育种学。

(二)生物科学在医学上的应用

药品领域的开发对生物科学的运用已达到相对成熟的阶段。改革开放后,生物技术制药受到了相对高度的重视,为生物高新技术的发展投入了大量的人力财力,因此,我国生物技术制药得到了快速的发展,已达到国际水平。2013年7月,深圳华大基因研究院亚洲癌症研究组织合作完成干细胞癌基因研究项目,这是继乙肝病毒整合机制研究之后的又一项重要生物科学研究成果。通过对88例癌患者进行全基因组测序,发现了一些列与肝细胞癌发生发展相关的基因突变,找到了肝细胞癌发生的两条关键性途径,从而为日后肝细胞癌治疗法的药物开发奠定了基础。

三、生物科学对社会带来的影响

20世纪70年代以来,随着生物科学的发展,生物科学基础的研究取得了不断突破。我国的生物科学技术成果在世界范围内得到了公众认可。在工业化和商业化飞速发展的今天,生物技术具有了良好的发展环境。通过对社会各个领域的发展经验总结得出,生物科学技术的发展仍然面临着众多挑战。我国的科研管理部门应对高校或科研组的科研项目加大人力财力的扶持,鼓励更多的青年科学家、技术专家投身于生物科学的研究中,并为他们提供多学科的培训,使得多学科科学的发展能具有高度的综合性,从而推进多领域的融合,促进现代社会生物科学技术的革新与健康发展。

四、结束语

生物科学技术的研究是科学应用研究的源泉,随着科学技术的进步和多种学科的融合发展,生物科学逐渐从单一化发展为多层次、多方面的科学技术,由宏观逐步发展到微观的可操作性。生物科学的发展对人们的生产生活产生了重要影响,赢得了人们越来越多的关注。我国的生物技术在发展中不断突破,研究成果已遍布全世界,相信如此下去,将会赢得生物科学的巨大成果。加大生物科学技术的研究进程,促进现代生物科学技术的良性有利发展,以实现我国科学技术又快又好的发展。

参考文献:

[1]周宜君,张淑萍,杨林等.民族高校生物科学类综合性、研究型野外实习的探索与实践――以中央民族大学实验基地为个案[J].民族教育研究,2009,20(5):18-22.

[2]郝建华,卢祥云,韩曜平等.应用型本科生物科学专业人才培养方案的构建――以常熟理工学院生物科学(师范)专业为例[J].新课程研究(高等教育),2011,(3):14-16.

[3]赵格日乐图,苏亚拉图,哈斯巴根等.生物科学专业野外综合实习教学改革与实践――以内蒙古师范大学生物科学专业为例[J].内蒙古师范大学学报(教育科学版),2011,24(5):148-151.

[4]李朝晖,周峰,华春等.高校生物科学专业人才培养方案的改革与实践――以南京晓庄学院生物科学专业为例[J].南京晓庄学院学报,2013,25(5):66-68.

[5]叶辉,丁斐,王兆慧等.特色专业与重点学科一体化建设实践与探索――以南通大学生物科学特色专业与生物学重点学科建设为例[J].安徽农业科学,2012,40(23):11885-11887.

格式

(一)题目

科学论文都有题目,不能“无题”。论文题目一般20字左右。题目大小应与内容符合,尽量不设副题,不用第1报、第2报之类。论文题目都用直叙口气,不用惊叹号或问号,也不能将科学论文题目写成广告语或新闻报道用语。

(二)署名

科学论文应该署真名和真实的工作单位。主要体现责任、成果归属并便于后人追踪研究。严格意义上的论文作者是指对选题、论证、查阅文献、方案设计、建立方法、实验操作、整理资料、归纳总结、撰写成文等全过程负责的人,应该是能解答论文的有关问题者。现在往往把参加工作的人全部列上,那就应该以贡献大小依次排列。论文署名应征得本人同意。学术指导人根据实际情况既可以列为论文作者,也可以一般致谢。行政领导人一般不署名。

(三)引言

是论文引人入胜之言,很重要,要写好。一段好的论文引言常能使读者明白你这份工作的发展历程和在这一研究方向中的位置。要写出论文立题依据、基础、背景、研究目的。要复习必要的文献、写明问题的发展。文字要简练。

(四)材料和方法

按规定如实写出实验对象、器材、动物和试剂及其规格,写出实验方法、指标、判断标准等,写出实验设计、分组、统计方法等。这些按杂志对论文投稿规定办即可。

(五)实验结果

应高度归纳,精心分析,合乎逻辑地铺述。应该去粗取精,去伪存真,但不能因不符合自己的意图而主观取舍,更不能弄虚作假。只有在技术不熟练或仪器不稳定时期所得的数据、在技术故障或操作错误时所得的数据和不符合实验条件时所得的数据才能废弃不用。而且必须在发现问题当时就在原始记录上注明原因,不能在总结处理时因不合常态而任意剔除。废弃这类数据时应将在同样条件下、同一时期的实验数据一并废弃,不能只废弃不合己意者。实验结果的整理应紧扣主题,删繁就简,有些数据不一定适合于这一篇论文,可留作它用,不要硬行拼凑到一篇论文中。论文行文应尽量采用专业术语。能用表的不要用图,可以不用图表的最好不要用图表,以免多占篇幅,增加排版困难。文、表、图互不重复。实验中的偶然现象和意外变故等特殊情况应作必要的交代,不要随意丢弃。

(六)讨论

是论文中比较重要,也是比较难写的一部分。应统观全局,抓住主要的有争议问题,从感性认识提高到理性认识进行论说。要对实验结果作出分析、推理,而不要重复叙述实验结果。应着重对国内外相关文献中的结果与观点作出讨论,表明自己的观点,尤其不应回避相对立的观点。论文的讨论中可以提出假设,提出本题的发展设想,但分寸应该恰当,不能写成“科幻”或“畅想”。

(七)结语或结论

论文的结语应写出明确可靠的结果,写出确凿的结论。论文的文字应简洁,可逐条写出。不要用“小结”之类含糊其辞的词。

(八)参考义献

这是论文中很重要、也是存在问题较多的一部分。列出论文参考文献的目的是让读者了解论文研究命题的来龙去脉,便于查找,同时也是尊重前人劳动,对自己的工作有准确的定位。因此这里既有技术问题,也有科学道德问题。一篇论文中几乎自始至终都有需要引用参考文献之处。如论文引言中应引上对本题最重要、最直接有关的文献;在方法中应引上所采用或借鉴的方法;在结果中有时要引上与文献对比的资料;在讨论中更应引上与论文有关的各种支持的或有矛盾的结果或观点等。一切粗心大意,不查文献;故意不引,自鸣创新;贬低别人,抬高自己;避重就轻,故作姿态的做法都是错误的。而这种现象现在在很多论文中还是时有所见的,这应该看成是利研工作者的大忌。其中,不查文献、漏掉重要文献、故意不引别人文献或有意贬损别人工作等错误是比较明显、容易发现的。有些做法则比较隐蔽,如将该引在引言中的,把它引到讨论中。这就将原本是你论文的基础或先导,放到和你论文平起平坐的位置。又如科研工作总是逐渐深人发展的,你的工作总是在前人工作基石出上发展起来做成的。正确的写法应是,某年某人对本题做出了什么结果,某年某人在这基础上又做出了什么结果,现在我在他们基础上完成了这一研究。这是实事求是的态度,这样表述丝毫无损于你的贡献。有些论文作者却不这样表述,而是说,某年某人做过本题没有做成,某年某人又做过本题仍没有做成,现在我做成了。这就不是实事求是的态度。这样有时可以糊弄一些不明真相的外行人,但只需内行人一戳,纸老虎就破,结果弄巧成拙,丧失信誉。这种现象在现实生活中还是不少见的。

(九)致谢

论文的指导者、技术协助者、提供特殊试剂或器材者、经费资助者和提出过重要建议者都属于致谢对象。论文致谢应该是真诚的、实在的,不要庸俗化。不要泛泛地致谢、不要只谢教授不谢旁人。写论文致谢前应征得被致谢者的同意,不能拉大旗作虎皮。

(十)摘要或提要

以200字左右简要地概括论文全文。常放篇首。论文摘要需精心撰写,有吸引力。要让读者看了论文摘要就像看到了论文的缩影,或者看了论文摘要就想继续看论文的有关部分。此外,还应给出几个关键词,关键词应写出真正关键的学术词汇,不要硬凑一般性用词。

300 评论

Leap丶飞。

1,序列比对(Sequence Alignment) 序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性.从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列.在各种试验条件下从探测数据(probe data)中决定物理和基因图存贮,遍历和比较数据库中的DNA序列比较两个或多个序列的相似性在数据库中搜索相关序列和子序列寻找核苷酸(nucleotides)的连续产生模式找出蛋白质和DNA序列中的信息成分序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,著名的BALST和FASTA算法及相应的改进方法均是从此前提出发的. 2, 蛋白质结构比对和预测 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找dockingdrugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构在进化中更稳定的保留,同时也包含了较AA序列更多的信息.蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应(不一定全真),物理上可用最小能量来解释.从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较进化族中不同的蛋白质结构.然而,蛋白结构预测研究现状还远远不能满足实际需要. 3, 基因识别,非编码区分析研究. 基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码区DNA序列目前没有一般性的指导方法.在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序列是难以想象的.侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden Markov Model)和GENSCAN,Splice Alignment等等. 4, 分子进化和比较基因组学 分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:Orthologous: 不同种族,相同功能的基因;Paralogous: 相同种族,不同功能的基因;Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统的聚类方法(如UPGMA)来实现. 5, 序列重叠群(Contigs)装配 根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个NP-完全问题. 6, 遗传密码的起源 通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材. 7, 基于结构的药物设计 人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一领域目的是发现新的基因药物,有着巨大的经济效益. 8.生物系统的建模和仿真 随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究 热点-系统生物学。目前来看,其研究内容包括生物系统的模拟(Curr Opin Rheumatol,2007,463-70),系统稳定性分析(Nonlinear Dynamics Psychol Life Sci,2007,413-33),系统鲁棒性分析(Ernst Schering Res Found Workshop, 2007,69-88)等方面。以SBML(Bioinformatics,2007,1297-8)为代表的建模语言在迅速发展之中,以布尔网络 (PLoS Comput Biol,2007,e163)、微分方程(Mol Biol Cell,2004,3841-62)、随机过程(Neural Comput,2007,3262-92)、离散动态事件系统等(Bioinformatics,2007,336-43)方法在系统分析中已经得到应 用。很多模型的建立借鉴了电路和其它物理系统建模的方法,很多研究试图从信息流、熵和能量流等宏观分析思想来解决系统的复杂性问题(Anal Quant Cytol Histol,2007,296-308)。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨 识所需要的数据远远超过了目前数据的产出能力。例如,对于时间序列的芯片数据,采样点的数量还不足以使用传统的时间序列建模方法,巨大的实验代价是目前系 统建模主要困难。系统描述和建模方法也需要开创性的发展。 9.生物信息学技术方法的研究 生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统 计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。巨大的计算量、复杂的噪声模式、海量的时变数据给传统的统计分析带来了巨大的困难, 需要像非参数统计(BMC Bioinformatics,2007,339)、聚类分析(Qual Life Res,2007,1655-63)等更加灵活的数据分析技术。高维数据的分析需要偏最小二乘(partial least squares,PLS)等特征空间的压缩技术。在计算机算法的开发中,需要充分考虑算法的时间和空间复杂度,使用并行计算、网格计算等技术来拓展算法的 可实现性。 10, 生物图像 没有血缘关系的人,为什么长得那么像呢? 外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合? 有什么生物学基础?基因是不是相似?我不知道,希望专家解答。 11, 其他 如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学,成为系统生物学的重要研究方法.从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识.

280 评论

柴米油盐的爱

高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变,一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。

Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。

全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。

de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。

外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

转录组学(transcriptomics)是在基因组学后新兴的一门学科,即研究特定细胞在某一功能状态下所能转录出来的所有RNA(包括mRNA和非编码RNA)的类型与拷贝数。Illumina提供的mRNA测序技术可在整个mRNA领域进行各种相关研究和新的发现。mRNA测序不对引物或探针进行设计,可自由提供关于转录的客观和权威信息。研究人员仅需要一次试验即可快速生成完整的poly-A尾的RNA完整序列信息,并分析基因表达、cSNP、全新的转录、全新异构体、剪接位点、等位基因特异性表达和罕见转录等最全面的转录组信息。简单的样品制备和数据分析软件支持在所有物种中的mRNA测序研究。

Small RNA(micro RNAs、siRNAs和 pi RNAs)是生命活动重要的调控因子,在基因表达调控、生物个体发育、代谢及疾病的发生等生理过程中起着重要的作用。Illumina能够对细胞或者组织中的全部Small RNA进行深度测序及定量分析等研究。实验时首先将18-30 nt范围的Small RNA从总RNA中分离出来,两端分别加上特定接头后体外反转录做成cDNA再做进一步处理后,利用测序仪对DNA片段进行单向末端直接测序。通过Illumina对Small RNA大规模测序分析,可以从中获得物种全基因组水平的miRNA图谱,实现包括新miRNA分子的挖掘,其作用靶基因的预测和鉴定、样品间差异表达分析、miRNAs聚类和表达谱分析等科学应用。

成熟的microRNA(miRNA)是17~24nt的单链非编码RNA分子,通过与mRNA相互作用影响目标mRNA的稳定性及翻译,最终诱导基因沉默,调控着基因表达、细胞生长、发育等生物学过程。基于第二代测序技术的microRNA测序,可以一次性获得数百万条microRNA序列,能够快速鉴定出不同组织、不同发育阶段、不同疾病状态下已知和未知的microRNA及其表达差异,为研究microRNA对细胞进程的作用及其生物学影响提供了有力工具。

染色质免疫共沉淀技术(ChromatinImmunoprecipitation,ChIP)也称结合位点分析法,是研究体内蛋白质与DNA相互作用的有力工具,通常用于转录因子结合位点或组蛋白特异性修饰位点的研究。将ChIP与第二代测序技术相结合的ChIP-Seq技术,能够高效地在全基因组范围内检测与组蛋白、转录因子等互作的DNA区段。

ChIP-Seq的原理是:首先通过染色质免疫共沉淀技术(ChIP)特异性地富集目的蛋白结合的DNA片段,并对其进行纯化与文库构建;然后对富集得到的DNA片段进行高通量测序。研究人员通过将获得的数百万条序列标签精确定位到基因组上,从而获得全基因组范围内与组蛋白、转录因子等互作的DNA区段信息。

CHIRP-Seq( Chromatin Isolation by RNA Purification )是一种检测与RNA绑定的DNA和蛋白的高通量测序方法。方法是通过设计生物素或链霉亲和素探针,把目标RNA拉下来以后,与其共同作用的DNA染色体片段就会附在到磁珠上,最后把染色体片段做高通量测序,这样会得到该RNA能够结合到在基因组的哪些区域,但由于蛋白测序技术不够成熟,无法知道与该RNA结合的蛋白。

RNA Immunoprecipitation是研究细胞内RNA与蛋白结合情况的技术,是了解转录后调控网络动态过程的有力工具,能帮助我们发现miRNA的调节靶点。这种技术运用针对目标蛋白的抗体把相应的RNA-蛋白复合物沉淀下来,然后经过分离纯化就可以对结合在复合物上的RNA进行测序分析。

RIP可以看成是普遍使用的染色质免疫沉淀ChIP技术的类似应用,但由于研究对象是RNA-蛋白复合物而不是DNA-蛋白复合物,RIP实验的优化条件与ChIP实验不太相同(如复合物不需要固定,RIP反应体系中的试剂和抗体绝对不能含有RNA酶,抗体需经RIP实验验证等等)。RIP技术下游结合microarray技术被称为RIP-Chip,帮助我们更高通量地了解癌症以及其它疾病整体水平的RNA变化。

CLIP-seq,又称为HITS-CLIP,即紫外交联免疫沉淀结合高通量测序(crosslinking-immunprecipitation and high-throughput sequencing), 是一项在全基因组水平揭示RNA分子与RNA结合蛋白相互作用的革命性技术。其主要原理是基于RNA分子与RNA结合蛋白在紫外照射下发生耦联,以RNA结合蛋白的特异性抗体将RNA-蛋白质复合体沉淀之后,回收其中的RNA片段,经添加接头、RT-PCR等步骤,对这些分子进行高通量测序,再经生物信息学的分析和处理、总结,挖掘出其特定规律,从而深入揭示RNA结合蛋白与RNA分子的调控作用及其对生命的意义。

什么是metagenomic(宏基因组):

Magenomics研究的对象是整个微生物群落。相对于传统单个细菌研究来说,它具有众多优势,其中很重要的两点:(1)微生物通常是以群落方式共生于某一小生境中,它们的很多特性是基于整个群落环境及个体间的相互影响的,因此做Metagenomics研究比做单个个体的研究更能发现其特性;(2) Metagenomics研究无需分离单个细菌,可以研究那些不能被实验室分离培养的微生物。

宏基因组是基因组学一个新兴的科学研究方向。宏基因组学(又称元基因组学,环境基因组学,生态基因组学等),是研究直接从环境样本中提取的基因组遗传物质的学科。传统的微生物研究依赖于实验室培养,元基因组的兴起填补了无法在传统实验室中培养的微生物研究的空白。过去几年中,DNA测序技术的进步以及测序通量和分析方法的改进使得人们得以一窥这一未知的基因组科学领域。

10 .什么是SNP、SNV(单核苷酸位点变异)

单核苷酸多态性singlenucleotide polymorphism,SNP 或单核苷酸位点变异SNV。个体间基因组DNA序列同一位置单个核苷酸变异(替代、插入或缺失)所引起的多态性。不同物种、个体基因组DNA序列同一位置上的单个核苷酸存在差别的现象。有这种差别的基因座、DNA序列等可作为基因组作图的标志。人基因组上平均约每1000个核苷酸即可能出现1个单核苷酸多态性的变化,其中有些单核苷酸多态性可能与疾病有关,但可能大多数与疾病无关。单核苷酸多态性是研究人类家族和动植物品系遗传变异的重要依据。在研究癌症基因组变异时,相对于正常组织,癌症中特异的单核苷酸变异是一种体细胞突变(somatic mutation),称做SNV。

基因组上小片段(>50bp)的插入或缺失,形同SNP/SNV。

基因组拷贝数变异是基因组变异的一种形式,通常使基因组中大片段的DNA形成非正常的拷贝数量。例如人类正常染色体拷贝数是2,有些染色体区域拷贝数变成1或3,这样,该区域发生拷贝数缺失或增加,位于该区域内的基因表达量也会受到影响。如果把一条染色体分成A-B-C-D四个区域,则A-B-C-C-D/A-C-B-C-D/A-C-C-B-C-D/A-B-D分别发生了C区域的扩增及缺失,扩增的位置可以是连续扩增如A-B-C-C-D也可以是在其他位置的扩增,如A-C-B-C-D。

染色体结构变异是指在染色体上发生了大片段的变异。主要包括染色体大片段的插入和缺失(引起CNV的变化),染色体内部的某块区域发生翻转颠换,两条染色体之间发生重组(inter-chromosome trans-location)等。一般SV的展示利用Circos 软件。

15.什么是Segment duplication

一般称为SD区域,串联重复是由序列相近的一些DNA片段串联组成。串联重复在人类基因多样性的灵长类基因中发挥重要作用。在人类染色体Y和22号染色体上,有很大的SD序列。

既基因型与表型;一般指某些单核苷酸位点变异与表现形式间的关系。

17.什么是soft-clipped reads

当基因组发生某一段的缺失,或转录组的剪接,在测序过程中,横跨缺失位点及剪接位点的reads回帖到基因组时,一条reads被切成两段,匹配到不同的区域,这样的reads叫做soft-clipped reads,这些reads对于鉴定染色体结构变异及外源序列整合具有重要作用。

由于大部分测序得到的reads较短,一个reads能够匹配到基因组多个位置,无法区分其真实来源的位置。一些工具根据统计模型,如将这类reads分配给reads较多的区域。

21.什么是Contig N50?

Reads拼接后会获得一些不同长度的Contigs。将所有的Contig长度相加,能获得一个Contig总长度。然后将所有的Contigs按照从长到短进行排序,如获得Contig 1,Contig 2,Contig 3...………Contig 25。将Contig按照这个顺序依次相加,当相加的长度达到Contig总长度的一半时,最后一个加上的Contig长度即为Contig N50。举例:Contig 1+Contig 2+ Contig 3+Contig 4=Contig总长度 1/2时,Contig 4的长度即为Contig N50。Contig N50可以作为基因组拼接的结果好坏的一个判断标准。值越大,contig越长组装效果越好,测序效率也就越好了. 给定一组具有其自身长度的重叠群,L50计数被定义为长度总和占基因组大小一半的重叠群的最小数量。 什么是Scaffold N50? Scaffold N50与Contig N50的定义类似。Contigs拼接组装获得一些不同长度的Scaffolds。将所有的Scaffold长度相加,能获得一个Scaffold总长度。然后将所有的Scaffolds按照从长到短进行排序,如获得Scaffold 1,Scaffold 2,Scaffold 3...………Scaffold 25。将Scaffold按照这个顺序依次相加,当相加的长度达到Scaffold总长度的一半时,最后一个加上的Scaffold长度即为Scaffold N50。举例:Scaffold 1+Scaffold 2+ Scaffold 3 +Scaffold 4 +Scaffold 5=Scaffold总长度 1/2时,Scaffold 5的长度即为Scaffold N50。Scaffold N50可以作为基因组拼接的结果好坏的一个判断标准。 22.什么是测序深度和覆盖度? 测序深度是指测序得到的总碱基数与待测基因组大小的比值。假设一个基因大小为2M,测序深度为10X,那么获得的总数据量为20M。覆盖度是指测序获得的序列占整个基因组的比例。由于基因组中的高GC、重复序列等复杂结构的存在,测序最终拼接组装获得的序列往往无法覆盖有所的区域,这部分没有获得的区域就称为Gap。例如一个细菌基因组测序,覆盖度是98%,那么还有2%的序列区域是没有通过测序获得的。

RPKM,Reads Per Kilobase of exon model per Million mapped reads, is defined in thisway [Mortazavi etal., 2008]: 每1百万个map上的reads中map到外显子的每1K个碱基上的reads个数。 假如有1百万个reads映射到了人的基因组上,那么具体到每个外显子呢,有多少映射上了呢,而外显子的长度不一,那么每1K个碱基上又有多少reads映射上了呢,这大概就是这个RPKM的直观解释。

如果对应特定基因的话,那么就是每1000000 mapped到该基因上的reads中每kb有多少是mapped到该基因上的exon的read Total exon reads:This is the number in the column with header Total exonreads in the row for the gene. This is the number of reads that have beenmapped to a region in which an exon is annotated for the gene or across theboundaries of two exons or an intron and an exon for an annotated transcript ofthe gene. For eukaryotes, exons and their internal relationships are defined byannotations of type mRNA.映射到外显子上总的reads个数。这个是映射到某个区域上的reads个数,这个区域或者是已知注释的基因或者跨两个外显子的边界或者是某个基因已经注释的转录本的内含子、外显子。对于真核生物来说,外显子和它们自己内部的关系由某类型的mRNA来注释。

Exonlength: This is the number in the column with the header Exon length inthe row for the gene, divided by 1000. This is calculated as the sum of thelengths of all exons annotated for the gene. Each exon is included only once inthis sum, even if it is present in more annotated transcripts for the overlapping exons will count with their full length, even though theyshare the same region.外显子的长度。计算时,计算所有某个基因已注释的所有外显子长度的总和。即使某个基因以多种注释的转录本呈现,这个外显子在求和时只被包含一次。即使部分重叠的外显子共享相同的区域,重叠的外显子以其总长来计算。 Mapped reads: The sum of all the numbers in the column with header Totalgene reads. The Total gene reads for a gene is the total number ofreads that after mapping have been mapped to the region of the gene. Thus thisincludes all the reads uniquely mapped to the region of the gene as well asthose of the reads which match in more places (below the limit set in thedialog in ) that have been allocated tothis gene's region. A gene's region is that comprised of the flanking regions(if it was specified in figure ), the exons, the introns andacross exon-exon boundaries of all transcripts annotated for the gene. Thus,the sum of the total gene reads numbers is the number of mapped reads for thesample (you can find the number in the RNA-Seq report).map的reads总和。映射到某个基因上的所有reads总数。因此这包含所有的唯一映射到这个区域上的reads。

举例:比如对应到该基因的read有1000个,总reads个数有100万,而该基因的外显子总长为5kb,那么它的RPKM为:10 9*1000(reads个数)/10 6(总reads个数) 5000(外显子长度)=200或者:1000(reads个数)/1(百万) 5(K)=200这个值反映基因的表达水平。

FPKM(fragments per kilobase of exon per million fragments mapped). FPKM与RPKM计算方法基本一致。不同点就是FPKM计算的是fragments,而RPKM计算的是reads。Fragment比read的含义更广,因此FPKM包含的意义也更广,可以是pair-end的一个fragment,也可以是一个read。

什么是转录本重构

用测序的数据组装成转录本。有两种组装方式:1,de-novo构建; 2,有参考基因组重构。其中de-novo组装是指在不依赖参考基因组的情况下,将有overlap的reads连接成一个更长的序列,经过不断的延伸,拼成一个个的contig及scaffold。常用工具包括velvet,trans-ABYSS,Trinity等。有参考基因组重构,是指先将read贴回到基因组上,然后在基因组通过reads覆盖度,junction位点的信息等得到转录本,常用工具包括scripture、cufflinks。

什么是genefusion

将基因组位置不同的两个基因中的一部分或全部整合到一起,形成新的基因,称作融合基因,或嵌合体基因。该基因有可能翻译出融合或嵌合体蛋白。

什么是表达谱

基因表达谱(geneexpression profile):指通过构建处于某一特定状态下的细胞或组织的非偏性cDNA文库,大规模cDNA测序,收集cDNA序列片段、定性、定量分析其mRNA群体组成,从而描绘该特定细胞或组织在特定状态下的基因表达种类和丰度信息,这样编制成的数据表就称为基因表达谱

什么是功能基因组学

功能基因组学(Functuionalgenomics)又往往被称为后基因组学(Postgenomics),它利用结构基因组所提供的信息和产物,发展和应用新的实验手段,通过在基因组或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质得研究转向多个基因或蛋白质同时进行系统的研究。这是在基因组静态的碱基序列弄清楚之后转入对基因组动态的生物学功能学研究。研究内容包括基因功能发现、基因表达分析及突变检测。基因的功能包括:生物学功能,如作为蛋白质激酶对特异蛋白质进行磷酸化修饰;细胞学功能,如参与细胞间和细胞内信号传递途径;发育上功能,如参与形态建成等。采用的手段包括经典的减法杂交,差示筛选,cDNA代表差异分析以及mRNA差异显示等,但这些技术不能对基因进行全面系统的

分析,新的技术应运而生,包括基因表达的系统分析(serial analysis of gene expression,SAGE),cDNA微阵列(cDNA microarray),DNA 芯片(DNA chip)和序列标志片段显示(sequence tagged fragmentsdisplay。

什么是比较基因组学

比较基因组学(ComparativeGenomics)是基于基因组图谱和测序基础上,对已知的基因和基因组结构进行比较,来了解基因的功能、表达机理和物种进化的学科。利用模式生物基因组与人类基因组之间编码顺序上和结构上的同源性,克隆人类疾病基因,揭示基因功能和疾病分子机制,阐明物种进化关系,及基因组的内在结构。

什么是表观遗传学

表观遗传学是研究基因的核苷酸序列不发生改变的情况下,基因表达了可遗传的变化的一门遗传学分支学科。表观遗传的现象很多,已知的有DNA甲基化(DNAmethylation),基因组印记(genomicimpriting),母体效应(maternaleffects),基因沉默(genesilencing),核仁显性,休眠转座子激活和RNA编辑(RNA editing)等。

什么是计算生物学

计算生物学是指开发和应用数据分析及理论的方法、数学建模、计算机仿真技术等。当前,生物学数据量和复杂性不断增长,每14个月基因研究产生的数据就会翻一番,单单依靠观察和实验已难以应付。因此,必须依靠大规模计算模拟技术,从海量信息中提取最有用的数据。

什么是基因组印记

基因组印记(又称遗传印记)是指基因根据亲代的不同而有不同的表达。印记基因的存在能导致细胞中两个等位基因的一个表达而另一个不表达。基因组印记是一正常过程,此现象在一些低等动物和植物中已发现多年。印记的基因只占人类基因组中的少数,可能不超过5%,但在胎儿的生长和行为发育中起着至关重要的作用。基因组印记病主要表现为过度生长、生长迟缓、智力障碍、行为异常。目前在肿瘤的研究中认为印记缺失是引起肿瘤最常见的遗传学因素之一。

什么是基因组学

基因组学(英文genomics),研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。

什么是DNA甲基化

DNA甲基化是指在DNA甲基化转移酶的作用下,在基因组CpG二核苷酸的胞嘧啶5'碳位共价键结合一个甲基基团。正常情况下,人类基因组“垃圾”序列的CpG二核苷酸相对稀少,并且总是处于甲基化状态,与之相反,人类基因组中大小为100—1000 bp左右且富含CpG二核苷酸的CpG岛则总是处于未甲基化状态,并且与56%的人类基因组编码基因相关。人类基因组序列草图分析结果表明,人类基因组CpG岛约为28890个,大部分染色体每1 Mb就有5—15个CpG岛,平均值为每Mb含10.5个CpG岛,CpG岛的数目与基因密度有良好的对应关系[9]。由于DNA甲基化与人类发育和肿瘤疾病的密切关系,特别是CpG岛甲基化所致抑癌基因转录失活问题,DNA甲基化已经成为表观遗传学和表观基因组学的重要研究内容。

什么是基因组注释?

基因组注释(Genomeannotation) 是利用生物信息学方法和工具,对基因组所有基因的生物学功能进行高通量注释,是当前功能基因组学研究的一个热点。基因组注释的研究内容包括基因识别和基因功能注释两个方面。基因识别的核心是确定全基因组序列中所有基因的确切位置。

什么是Q30?

Q30是指一个碱基的识别可靠性等于,或者说出错可能性是。Q20则是指碱基识别的可靠性等于99%。

Q30数据量是指一批数据中,质量高于等于Q30的数据的量的总和。

测序数据的PF data/PF reads是什么意思?

PF是pass filter的意思。也就是质量合格的意思。Illumina的测仪序会自动地对一个read(序列)的质量可靠性进行打分。

对于前25个碱基中的是否有两个碱基的识别可靠性低于,是PF的判断标准。这句话翻译成较容易理解的话: 就是前25个碱基中,如果低质量的数据有2个或更多,则这条read被判定为不合格,PF就不通过。反之,则质检通过。

PF是国际公认的质检标准。

你们给的数据是什么质量的?

对于哺乳动物基因组重测序、外显子测序,我们保证数据质量是Q30的比例高于80%。对于mRNA测序,smRNA测序,我们保证对照Lane的数据质是Q30的比例高于80%。

一般情况下:

哺乳动物基因组重测序、外显子测序,GC比例在40%左右,Q30的比例是80~95%

RNA-seq,GC比例在50%左右,Q30的比例是~80%。如果Poly(A)特别多的情况下,Q30会更低一些

SmRNA-seq,因为有许多的read读通之后,只剩下一串的A,质量会更低,我们的实验结果%Q30在70~75%

测序中的Duplication是什么,如何避免,一般会有多少Duplication?

所谓Duplication是指起始与终止位置完全一致的片段。

引起Duplication的主要原因是因为在测序中有PCR过程,来源于同一个DNA片段PCR的产物被重复测序,就会是Duplication。次要原因是正巧两个片段的头和尾的位置完全一致。

一般通过控制PCR的循环数来控制Duplication。我们一般控制PCR的循环次数在10~12个循环。

在药明康德外显子测序中,如果用illumina的捕获试剂盒Duplication的比例约为10%,如果用Nimblegen的捕获试剂盒Duplication的比例波动较大,在5~50%范围 ,平均为30%。

在RNA-seq中,Duplication的比例约为40%。RNA-seq中,因为高丰度的mRNA集中在几个基因上,集中度很高,所以Duplication的比例也就高。

测序的插入片段一般是多长?

测序的插入片段一般是100bp到600bp.

因为Hiseq测序过程中有一个桥式PCR的过程。如果插入片段过长,测桥式PCR产生的Cluster就会太大,而且光强也会减弱。所以插入片段的长度是有限制的。

PhiX文库有什么用?

PhiX文库是一种用病毒基因组做的文库。其基因序列已精确知晓,GC比例约为40%,与人类、哺乳类的基因组的GC比例接近。其基因序列又与人类的基因序列相去甚远,在与哺乳类基因组一些测序时,可以轻松地通过基因序列比对而将之去除。

在测四种碱基不平衡(A、G、C、T四种碱基的含量远远偏离25%)的样本时,可以加入大量的PhiX文库,以部分抵消样本的不平衡性。例如ChIPed DNA测序,或者亚硫酸氢盐处理过的DNA文库,或者扩增子测序(PCR样测序),都可以加入PhiX,以部分弥补碱基不平衡性。

也可以少量地加入样本,以作为control library来验证测序质量。

136 评论

相关问答

  • 关于肉制品检测论文范文资料

    食品科学充分体现了服务人、关心人、尊重人的人本主义精神。我整理的食品科学论文模板,希望你能从中得到感悟! 食品科学论文模板篇一 食品安全

    慧心永梅 4人参与回答 2023-12-05
  • 关于蠡测论文范文资料

    【管窥蠡测】 汉 东方朔 《答客难》:“以筦窥天,以蠡测海,以筳撞钟,岂能通其条贯,考其文理,发其音声哉。”后因以“管窥蠡测”比喻眼界狭小,见识短浅。 明 张纶

    小优雅0811 3人参与回答 2023-12-07
  • 关于中资论文范文资料

    我国中小企业融资环境的优化与对策研究摘 要: 改革开放至今,民营中小企业经过长足的发展,作为经济社会发展不可缺少的组织细胞, 在促进经济发展、扩大社会就业、提供

    月球的球球 3人参与回答 2023-12-10
  • 关于兰亭序论文范文资料

    是王羲之书法作品《兰亭序》字体的资料吗?请看: 首先,《兰亭序》书法作品里“之”字很重要 书圣王羲之在出现的20个“之”字,加上落款1个“之”字共21个字“之”

    华蓥山5 7人参与回答 2023-12-09
  • 关于测序论文范文资料

    生物科学论文格式范文 无论是身处学校还是步入社会,大家都尝试过写论文吧,论文是对某些学术问题进行研究的手段。那么,怎么去写论文呢?以下是我为大家整理的生物科学论

    大眼睛鱼儿 3人参与回答 2023-12-08